You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

resnet_cifar_memreuse.py 5.9 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import os
  16. import random
  17. import argparse
  18. import numpy as np
  19. from resnet import resnet50
  20. import mindspore.common.dtype as mstype
  21. import mindspore.context as context
  22. import mindspore.dataset as de
  23. import mindspore.dataset.transforms.c_transforms as C
  24. import mindspore.dataset.vision.c_transforms as vision
  25. import mindspore.nn as nn
  26. from mindspore import Tensor
  27. from mindspore.communication.management import init
  28. from mindspore.nn.optim.momentum import Momentum
  29. from mindspore.ops import functional as F
  30. from mindspore.ops import operations as P
  31. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
  32. from mindspore.train.model import Model
  33. from mindspore.context import ParallelMode
  34. random.seed(1)
  35. np.random.seed(1)
  36. de.config.set_seed(1)
  37. parser = argparse.ArgumentParser(description='Image classification')
  38. parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
  39. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  40. parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
  41. parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
  42. parser.add_argument('--epoch_size', type=int, default=1, help='Epoch size.')
  43. parser.add_argument('--batch_size', type=int, default=4, help='Batch size.')
  44. parser.add_argument('--num_classes', type=int, default=10, help='Num classes.')
  45. parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
  46. parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path')
  47. args_opt = parser.parse_args()
  48. device_id = int(os.getenv('DEVICE_ID'))
  49. data_home = args_opt.dataset_path
  50. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  51. context.set_context(device_id=device_id)
  52. def create_dataset(repeat_num=1, training=True):
  53. data_dir = data_home + "/cifar-10-batches-bin"
  54. if not training:
  55. data_dir = data_home + "/cifar-10-verify-bin"
  56. ds = de.Cifar10Dataset(data_dir)
  57. if args_opt.run_distribute:
  58. rank_id = int(os.getenv('RANK_ID'))
  59. rank_size = int(os.getenv('RANK_SIZE'))
  60. ds = de.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
  61. resize_height = 224
  62. resize_width = 224
  63. rescale = 1.0 / 255.0
  64. shift = 0.0
  65. # define map operations
  66. random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
  67. random_horizontal_op = vision.RandomHorizontalFlip()
  68. resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
  69. rescale_op = vision.Rescale(rescale, shift)
  70. normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
  71. changeswap_op = vision.HWC2CHW()
  72. type_cast_op = C.TypeCast(mstype.int32)
  73. c_trans = []
  74. if training:
  75. c_trans = [random_crop_op, random_horizontal_op]
  76. c_trans += [resize_op, rescale_op, normalize_op,
  77. changeswap_op]
  78. # apply map operations on images
  79. ds = ds.map(operations=type_cast_op, input_columns="label")
  80. ds = ds.map(operations=c_trans, input_columns="image")
  81. # apply repeat operations
  82. ds = ds.repeat(repeat_num)
  83. # apply shuffle operations
  84. ds = ds.shuffle(buffer_size=10)
  85. # apply batch operations
  86. ds = ds.batch(batch_size=args_opt.batch_size, drop_remainder=True)
  87. return ds
  88. class CrossEntropyLoss(nn.Cell):
  89. def __init__(self):
  90. super(CrossEntropyLoss, self).__init__()
  91. self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
  92. self.mean = P.ReduceMean()
  93. self.one_hot = P.OneHot()
  94. self.one = Tensor(1.0, mstype.float32)
  95. self.zero = Tensor(0.0, mstype.float32)
  96. def construct(self, logits, label):
  97. label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
  98. loss_func = self.cross_entropy(logits, label)[0]
  99. loss_func = self.mean(loss_func, (-1,))
  100. return loss_func
  101. if __name__ == '__main__':
  102. if not args_opt.do_eval and args_opt.run_distribute:
  103. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL)
  104. context.set_auto_parallel_context(all_reduce_fusion_split_indices=[140])
  105. init()
  106. context.set_context(mode=context.GRAPH_MODE)
  107. epoch_size = args_opt.epoch_size
  108. net = resnet50(args_opt.batch_size, args_opt.num_classes)
  109. loss = CrossEntropyLoss()
  110. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
  111. model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
  112. if args_opt.do_train:
  113. dataset = create_dataset(epoch_size)
  114. batch_num = dataset.get_dataset_size()
  115. config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=10)
  116. ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10", directory="./", config=config_ck)
  117. loss_cb = LossMonitor()
  118. model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
  119. if args_opt.do_eval:
  120. eval_dataset = create_dataset(1, training=False)
  121. res = model.eval(eval_dataset)
  122. print("result: ", res)
  123. checker = os.path.exists("./memreuse.ir")
  124. assert checker, True