You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

resnet.py 9.5 kB

5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore.nn as nn
  17. from mindspore import Tensor
  18. from mindspore.common import dtype as mstype
  19. from mindspore.common.initializer import initializer
  20. from mindspore.ops import operations as P
  21. def weight_variable(shape):
  22. return initializer('XavierUniform', shape=shape, dtype=mstype.float32)
  23. def weight_variable_uniform(shape):
  24. return initializer('Uniform', shape=shape, dtype=mstype.float32)
  25. def weight_variable_0(shape):
  26. zeros = np.zeros(shape).astype(np.float32)
  27. return Tensor(zeros)
  28. def weight_variable_1(shape):
  29. ones = np.ones(shape).astype(np.float32)
  30. return Tensor(ones)
  31. def conv3x3(in_channels, out_channels, stride=1, padding=0):
  32. """3x3 convolution """
  33. weight_shape = (out_channels, in_channels, 3, 3)
  34. weight = weight_variable(weight_shape)
  35. return nn.Conv2d(in_channels, out_channels,
  36. kernel_size=3, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
  37. def conv1x1(in_channels, out_channels, stride=1, padding=0):
  38. """1x1 convolution"""
  39. weight_shape = (out_channels, in_channels, 1, 1)
  40. weight = weight_variable(weight_shape)
  41. return nn.Conv2d(in_channels, out_channels,
  42. kernel_size=1, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
  43. def conv7x7(in_channels, out_channels, stride=1, padding=0):
  44. """1x1 convolution"""
  45. weight_shape = (out_channels, in_channels, 7, 7)
  46. weight = weight_variable(weight_shape)
  47. return nn.Conv2d(in_channels, out_channels,
  48. kernel_size=7, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
  49. def bn_with_initialize(out_channels):
  50. shape = (out_channels)
  51. mean = weight_variable_0(shape)
  52. var = weight_variable_1(shape)
  53. beta = weight_variable_0(shape)
  54. gamma = weight_variable_uniform(shape)
  55. bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init=gamma,
  56. beta_init=beta, moving_mean_init=mean, moving_var_init=var)
  57. return bn
  58. def bn_with_initialize_last(out_channels):
  59. shape = (out_channels)
  60. mean = weight_variable_0(shape)
  61. var = weight_variable_1(shape)
  62. beta = weight_variable_0(shape)
  63. gamma = weight_variable_uniform(shape)
  64. bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init=gamma,
  65. beta_init=beta, moving_mean_init=mean, moving_var_init=var)
  66. return bn
  67. def fc_with_initialize(input_channels, out_channels):
  68. weight_shape = (out_channels, input_channels)
  69. weight = weight_variable(weight_shape)
  70. bias_shape = (out_channels)
  71. bias = weight_variable_uniform(bias_shape)
  72. return nn.Dense(input_channels, out_channels, weight, bias)
  73. class ResidualBlock(nn.Cell):
  74. expansion = 4
  75. def __init__(self,
  76. in_channels,
  77. out_channels,
  78. stride=1):
  79. super(ResidualBlock, self).__init__()
  80. out_chls = out_channels // self.expansion
  81. self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
  82. self.bn1 = bn_with_initialize(out_chls)
  83. self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=0)
  84. self.bn2 = bn_with_initialize(out_chls)
  85. self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
  86. self.bn3 = bn_with_initialize_last(out_channels)
  87. self.relu = P.ReLU()
  88. self.add = P.TensorAdd()
  89. def construct(self, x):
  90. identity = x
  91. out = self.conv1(x)
  92. out = self.bn1(out)
  93. out = self.relu(out)
  94. out = self.conv2(out)
  95. out = self.bn2(out)
  96. out = self.relu(out)
  97. out = self.conv3(out)
  98. out = self.bn3(out)
  99. out = self.add(out, identity)
  100. out = self.relu(out)
  101. return out
  102. class ResidualBlockWithDown(nn.Cell):
  103. expansion = 4
  104. def __init__(self,
  105. in_channels,
  106. out_channels,
  107. stride=1,
  108. down_sample=False):
  109. super(ResidualBlockWithDown, self).__init__()
  110. out_chls = out_channels // self.expansion
  111. self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
  112. self.bn1 = bn_with_initialize(out_chls)
  113. self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=0)
  114. self.bn2 = bn_with_initialize(out_chls)
  115. self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
  116. self.bn3 = bn_with_initialize_last(out_channels)
  117. self.relu = P.ReLU()
  118. self.downSample = down_sample
  119. self.conv_down_sample = conv1x1(in_channels, out_channels, stride=stride, padding=0)
  120. self.bn_down_sample = bn_with_initialize(out_channels)
  121. self.add = P.TensorAdd()
  122. def construct(self, x):
  123. identity = x
  124. out = self.conv1(x)
  125. out = self.bn1(out)
  126. out = self.relu(out)
  127. out = self.conv2(out)
  128. out = self.bn2(out)
  129. out = self.relu(out)
  130. out = self.conv3(out)
  131. out = self.bn3(out)
  132. identity = self.conv_down_sample(identity)
  133. identity = self.bn_down_sample(identity)
  134. out = self.add(out, identity)
  135. out = self.relu(out)
  136. return out
  137. class MakeLayer0(nn.Cell):
  138. def __init__(self, block, in_channels, out_channels, stride):
  139. super(MakeLayer0, self).__init__()
  140. self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True)
  141. self.b = block(out_channels, out_channels, stride=stride)
  142. self.c = block(out_channels, out_channels, stride=1)
  143. def construct(self, x):
  144. x = self.a(x)
  145. x = self.b(x)
  146. x = self.c(x)
  147. return x
  148. class MakeLayer1(nn.Cell):
  149. def __init__(self, block, in_channels, out_channels, stride):
  150. super(MakeLayer1, self).__init__()
  151. self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
  152. self.b = block(out_channels, out_channels, stride=1)
  153. self.c = block(out_channels, out_channels, stride=1)
  154. self.d = block(out_channels, out_channels, stride=1)
  155. def construct(self, x):
  156. x = self.a(x)
  157. x = self.b(x)
  158. x = self.c(x)
  159. x = self.d(x)
  160. return x
  161. class MakeLayer2(nn.Cell):
  162. def __init__(self, block, in_channels, out_channels, stride):
  163. super(MakeLayer2, self).__init__()
  164. self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
  165. self.b = block(out_channels, out_channels, stride=1)
  166. self.c = block(out_channels, out_channels, stride=1)
  167. self.d = block(out_channels, out_channels, stride=1)
  168. self.e = block(out_channels, out_channels, stride=1)
  169. self.f = block(out_channels, out_channels, stride=1)
  170. def construct(self, x):
  171. x = self.a(x)
  172. x = self.b(x)
  173. x = self.c(x)
  174. x = self.d(x)
  175. x = self.e(x)
  176. x = self.f(x)
  177. return x
  178. class MakeLayer3(nn.Cell):
  179. def __init__(self, block, in_channels, out_channels, stride):
  180. super(MakeLayer3, self).__init__()
  181. self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
  182. self.b = block(out_channels, out_channels, stride=1)
  183. self.c = block(out_channels, out_channels, stride=1)
  184. def construct(self, x):
  185. x = self.a(x)
  186. x = self.b(x)
  187. x = self.c(x)
  188. return x
  189. class ResNet(nn.Cell):
  190. def __init__(self, block, num_classes=100, batch_size=32):
  191. super(ResNet, self).__init__()
  192. self.batch_size = batch_size
  193. self.num_classes = num_classes
  194. self.conv1 = conv7x7(3, 64, stride=2, padding=0)
  195. self.bn1 = bn_with_initialize(64)
  196. self.relu = P.ReLU()
  197. self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
  198. self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1)
  199. self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2)
  200. self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2)
  201. self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2)
  202. self.pool = P.ReduceMean(keep_dims=True)
  203. self.squeeze = P.Squeeze(axis=(2, 3))
  204. self.fc = fc_with_initialize(512 * block.expansion, num_classes)
  205. def construct(self, x):
  206. x = self.conv1(x)
  207. x = self.bn1(x)
  208. x = self.relu(x)
  209. x = self.maxpool(x)
  210. x = self.layer1(x)
  211. x = self.layer2(x)
  212. x = self.layer3(x)
  213. x = self.layer4(x)
  214. x = self.pool(x, (2, 3))
  215. x = self.squeeze(x)
  216. x = self.fc(x)
  217. return x
  218. def resnet50(batch_size, num_classes):
  219. return ResNet(ResidualBlock, num_classes, batch_size)