You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 19 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. # Contents
  2. - [SSD Description](#ssd-description)
  3. - [Model Architecture](#model-architecture)
  4. - [Dataset](#dataset)
  5. - [Environment Requirements](#environment-requirements)
  6. - [Quick Start](#quick-start)
  7. - [Script Description](#script-description)
  8. - [Script and Sample Code](#script-and-sample-code)
  9. - [Script Parameters](#script-parameters)
  10. - [Training Process](#training-process)
  11. - [Training](#training)
  12. - [Evaluation Process](#evaluation-process)
  13. - [Evaluation](#evaluation)
  14. - [Export MindIR](#export-mindir)
  15. - [Model Description](#model-description)
  16. - [Performance](#performance)
  17. - [Evaluation Performance](#evaluation-performance)
  18. - [Inference Performance](#evaluation-performance)
  19. - [Description of Random Situation](#description-of-random-situation)
  20. - [ModelZoo Homepage](#modelzoo-homepage)
  21. # [SSD Description](#contents)
  22. SSD discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape.Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes.
  23. [Paper](https://arxiv.org/abs/1512.02325): Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg.European Conference on Computer Vision (ECCV), 2016 (In press).
  24. # [Model Architecture](#contents)
  25. The SSD approach is based on a feed-forward convolutional network that produces a fixed-size collection of bounding boxes and scores for the presence of object class instances in those boxes, followed by a non-maximum suppression step to produce the final detections. The early network layers are based on a standard architecture used for high quality image classification, which is called the base network. Then add auxiliary structure to the network to produce detections.
  26. # [Dataset](#contents)
  27. Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
  28. Dataset used: [COCO2017](<http://images.cocodataset.org/>)
  29. - Dataset size:19G
  30. - Train:18G,118000 images
  31. - Val:1G,5000 images
  32. - Annotations:241M,instances,captions,person_keypoints etc
  33. - Data format:image and json files
  34. - Note:Data will be processed in dataset.py
  35. # [Environment Requirements](#contents)
  36. - Install [MindSpore](https://www.mindspore.cn/install/en).
  37. - Download the dataset COCO2017.
  38. - We use COCO2017 as training dataset in this example by default, and you can also use your own datasets.
  39. First, install Cython ,pycocotool and opencv to process data and to get evaluation result.
  40. ```
  41. pip install Cython
  42. pip install pycocotools
  43. pip install opencv-python
  44. ```
  45. 1. If coco dataset is used. **Select dataset to coco when run script.**
  46. Change the `coco_root` and other settings you need in `src/config.py`. The directory structure is as follows:
  47. ```
  48. .
  49. └─coco_dataset
  50. ├─annotations
  51. ├─instance_train2017.json
  52. └─instance_val2017.json
  53. ├─val2017
  54. └─train2017
  55. ```
  56. 2. If VOC dataset is used. **Select dataset to voc when run script.**
  57. Change `classes`, `num_classes`, `voc_json` and `voc_root` in `src/config.py`. `voc_json` is the path of json file with coco format for evalution, `voc_root` is the path of VOC dataset, the directory structure is as follows:
  58. ```
  59. .
  60. └─voc_dataset
  61. └─train
  62. ├─0001.jpg
  63. └─0001.xml
  64. ...
  65. ├─xxxx.jpg
  66. └─xxxx.xml
  67. └─eval
  68. ├─0001.jpg
  69. └─0001.xml
  70. ...
  71. ├─xxxx.jpg
  72. └─xxxx.xml
  73. ```
  74. 3. If your own dataset is used. **Select dataset to other when run script.**
  75. Organize the dataset infomation into a TXT file, each row in the file is as follows:
  76. ```
  77. train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
  78. ```
  79. Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class infomations of the format [xmin,ymin,xmax,ymax,class]. We read image from an image path joined by the `image_dir`(dataset directory) and the relative path in `anno_path`(the TXT file path), `image_dir` and `anno_path` are setting in `src/config.py`.
  80. # [Quick Start](#contents)
  81. After installing MindSpore via the official website, you can start training and evaluation as follows:
  82. - runing on Ascend
  83. ```
  84. # distributed training on Ascend
  85. sh run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] [RANK_TABLE_FILE]
  86. # run eval on Ascend
  87. sh run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
  88. ```
  89. - runing on GPU
  90. ```
  91. # distributed training on GPU
  92. sh run_distribute_train_gpu.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET]
  93. # run eval on GPU
  94. sh run_eval_gpu.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
  95. ```
  96. - runing on CPU(support Windows and Ubuntu)
  97. **CPU is usually used for fine-tuning, which needs pre_trained checkpoint.**
  98. ```
  99. # training on CPU
  100. python train.py --run_platform=CPU --lr=[LR] --dataset=[DATASET] --epoch_size=[EPOCH_SIZE] --batch_size=[BATCH_SIZE] --pre_trained=[PRETRAINED_CKPT] --filter_weight=True --save_checkpoint_epochs=1
  101. # run eval on GPU
  102. python eval.py --run_platform=CPU --dataset=[DATASET] --checkpoint_path=[PRETRAINED_CKPT]
  103. ```
  104. # [Script Description](#contents)
  105. ## [Script and Sample Code](#contents)
  106. ```shell
  107. .
  108. └─ cv
  109. └─ ssd
  110. ├─ README.md # descriptions about SSD
  111. ├─ scripts
  112. ├─ run_distribute_train.sh # shell script for distributed on ascend
  113. ├─ run_distribute_train_gpu.sh # shell script for distributed on gpu
  114. ├─ run_eval.sh # shell script for eval on ascend
  115. └─ run_eval_gpu.sh # shell script for eval on gpu
  116. ├─ src
  117. ├─ __init__.py # init file
  118. ├─ box_utils.py # bbox utils
  119. ├─ eval_utils.py # metrics utils
  120. ├─ config.py # total config
  121. ├─ dataset.py # create dataset and process dataset
  122. ├─ init_params.py # parameters utils
  123. ├─ lr_schedule.py # learning ratio generator
  124. └─ ssd.py # ssd architecture
  125. ├─ eval.py # eval scripts
  126. ├─ train.py # train scripts
  127. ├─ export.py # export mindir script
  128. └─ mindspore_hub_conf.py # mindspore hub interface
  129. ```
  130. ## [Script Parameters](#contents)
  131. ```
  132. Major parameters in train.py and config.py as follows:
  133. "device_num": 1 # Use device nums
  134. "lr": 0.05 # Learning rate init value
  135. "dataset": coco # Dataset name
  136. "epoch_size": 500 # Epoch size
  137. "batch_size": 32 # Batch size of input tensor
  138. "pre_trained": None # Pretrained checkpoint file path
  139. "pre_trained_epoch_size": 0 # Pretrained epoch size
  140. "save_checkpoint_epochs": 10 # The epoch interval between two checkpoints. By default, the checkpoint will be saved per 10 epochs
  141. "loss_scale": 1024 # Loss scale
  142. "filter_weight": False # Load paramters in head layer or not. If the class numbers of train dataset is different from the class numbers in pre_trained checkpoint, please set True.
  143. "freeze_layer": "none" # Freeze the backbone paramters or not, support none and backbone.
  144. "class_num": 81 # Dataset class number
  145. "image_shape": [300, 300] # Image height and width used as input to the model
  146. "mindrecord_dir": "/data/MindRecord_COCO" # MindRecord path
  147. "coco_root": "/data/coco2017" # COCO2017 dataset path
  148. "voc_root": "/data/voc_dataset" # VOC original dataset path
  149. "voc_json": "annotations/voc_instances_val.json" # is the path of json file with coco format for evalution
  150. "image_dir": "" # Other dataset image path, if coco or voc used, it will be useless
  151. "anno_path": "" # Other dataset annotation path, if coco or voc used, it will be useless
  152. ```
  153. ## [Training Process](#contents)
  154. To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/convert_dataset.html) files by `coco_root`(coco dataset), `voc_root`(voc dataset) or `image_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.**
  155. ### Training on Ascend
  156. - Distribute mode
  157. ```
  158. sh run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] [RANK_TABLE_FILE] [PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)
  159. ```
  160. We need five or seven parameters for this scripts.
  161. - `DEVICE_NUM`: the device number for distributed train.
  162. - `EPOCH_NUM`: epoch num for distributed train.
  163. - `LR`: learning rate init value for distributed train.
  164. - `DATASET`:the dataset mode for distributed train.
  165. - `RANK_TABLE_FILE :` the path of [rank_table.json](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools), it is better to use absolute path.
  166. - `PRE_TRAINED :` the path of pretrained checkpoint file, it is better to use absolute path.
  167. - `PRE_TRAINED_EPOCH_SIZE :` the epoch num of pretrained.
  168. Training result will be stored in the current path, whose folder name begins with "LOG". Under this, you can find checkpoint file together with result like the followings in log
  169. ```
  170. epoch: 1 step: 458, loss is 3.1681802
  171. epoch time: 228752.4654865265, per step time: 499.4595316299705
  172. epoch: 2 step: 458, loss is 2.8847265
  173. epoch time: 38912.93382644653, per step time: 84.96273761232868
  174. epoch: 3 step: 458, loss is 2.8398118
  175. epoch time: 38769.184827804565, per step time: 84.64887516987896
  176. ...
  177. epoch: 498 step: 458, loss is 0.70908034
  178. epoch time: 38771.079778671265, per step time: 84.65301261718616
  179. epoch: 499 step: 458, loss is 0.7974688
  180. epoch time: 38787.413120269775, per step time: 84.68867493508685
  181. epoch: 500 step: 458, loss is 0.5548882
  182. epoch time: 39064.8467540741, per step time: 85.29442522723602
  183. ```
  184. ### Training on GPU
  185. - Distribute mode
  186. ```
  187. sh run_distribute_train_gpu.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] [PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)
  188. ```
  189. We need five or seven parameters for this scripts.
  190. - `DEVICE_NUM`: the device number for distributed train.
  191. - `EPOCH_NUM`: epoch num for distributed train.
  192. - `LR`: learning rate init value for distributed train.
  193. - `DATASET`:the dataset mode for distributed train.
  194. - `PRE_TRAINED :` the path of pretrained checkpoint file, it is better to use absolute path.
  195. - `PRE_TRAINED_EPOCH_SIZE :` the epoch num of pretrained.
  196. Training result will be stored in the current path, whose folder name is "LOG". Under this, you can find checkpoint files together with result like the followings in log
  197. ```
  198. epoch: 1 step: 1, loss is 420.11783
  199. epoch: 1 step: 2, loss is 434.11032
  200. epoch: 1 step: 3, loss is 476.802
  201. ...
  202. epoch: 1 step: 458, loss is 3.1283689
  203. epoch time: 150753.701, per step time: 329.157
  204. ...
  205. ```
  206. ## [Evaluation Process](#contents)
  207. ### Evaluation on Ascend
  208. ```
  209. sh run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
  210. ```
  211. We need two parameters for this scripts.
  212. - `DATASET`:the dataset mode of evaluation dataset.
  213. - `CHECKPOINT_PATH`: the absolute path for checkpoint file.
  214. - `DEVICE_ID`: the device id for eval.
  215. > checkpoint can be produced in training process.
  216. Inference result will be stored in the example path, whose folder name begins with "eval". Under this, you can find result like the followings in log.
  217. ```
  218. Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.238
  219. Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.400
  220. Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.240
  221. Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.039
  222. Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.198
  223. Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.438
  224. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.250
  225. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.389
  226. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.424
  227. Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.122
  228. Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.434
  229. Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.697
  230. ========================================
  231. mAP: 0.23808886505483504
  232. ```
  233. ### Evaluation on GPU
  234. ```
  235. sh run_eval_gpu.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
  236. ```
  237. We need two parameters for this scripts.
  238. - `DATASET`:the dataset mode of evaluation dataset.
  239. - `CHECKPOINT_PATH`: the absolute path for checkpoint file.
  240. - `DEVICE_ID`: the device id for eval.
  241. > checkpoint can be produced in training process.
  242. Inference result will be stored in the example path, whose folder name begins with "eval". Under this, you can find result like the followings in log.
  243. ```
  244. Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.224
  245. Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.375
  246. Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.228
  247. Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.034
  248. Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.189
  249. Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.407
  250. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.243
  251. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.382
  252. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.417
  253. Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.120
  254. Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.425
  255. Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.686
  256. ========================================
  257. mAP: 0.2244936111705981
  258. ```
  259. ## [Export MindIR](#contents)
  260. ```
  261. python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
  262. ```
  263. The ckpt_file parameter is required.
  264. # [Model Description](#contents)
  265. ## [Performance](#contents)
  266. ### Evaluation Performance
  267. | Parameters | Ascend | GPU |
  268. | -------------------------- | -------------------------------------------------------------| -------------------------------------------------------------|
  269. | Model Version | SSD V1 | SSD V1 |
  270. | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | NV SMX2 V100-16G |
  271. | uploaded Date | 09/15/2020 (month/day/year) | 09/24/2020 (month/day/year) |
  272. | MindSpore Version | 1.0.0 | 1.0.0 |
  273. | Dataset | COCO2017 | COCO2017 |
  274. | Training Parameters | epoch = 500, batch_size = 32 | epoch = 800, batch_size = 32 |
  275. | Optimizer | Momentum | Momentum |
  276. | Loss Function | Sigmoid Cross Entropy,SmoothL1Loss | Sigmoid Cross Entropy,SmoothL1Loss |
  277. | Speed | 8pcs: 90ms/step | 8pcs: 121ms/step |
  278. | Total time | 8pcs: 4.81hours | 8pcs: 12.31hours |
  279. | Parameters (M) | 34 | 34 |
  280. | Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/ssd | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/ssd |
  281. ### Inference Performance
  282. | Parameters | Ascend | GPU |
  283. | ------------------- | ----------------------------| ----------------------------|
  284. | Model Version | SSD V1 | SSD V1 |
  285. | Resource | Ascend 910 | GPU |
  286. | Uploaded Date | 09/15/2020 (month/day/year) | 09/24/2020 (month/day/year) |
  287. | MindSpore Version | 1.0.0 | 1.0.0 |
  288. | Dataset | COCO2017 | COCO2017 |
  289. | batch_size | 1 | 1 |
  290. | outputs | mAP | mAP |
  291. | Accuracy | IoU=0.50: 23.8% | IoU=0.50: 22.4% |
  292. | Model for inference | 34M(.ckpt file) | 34M(.ckpt file) |
  293. # [Description of Random Situation](#contents)
  294. In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
  295. # [ModelZoo Homepage](#contents)
  296. Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).