You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 5.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. # Licensed under the Apache License, Version 2.0 (the "License");
  3. # you may not use this file except in compliance with the License.
  4. # You may obtain a copy of the License at
  5. # http://www.apache.org/licenses/LICENSE-2.0
  6. # Unless required by applicable law or agreed to in writing, software
  7. # distributed under the License is distributed on an "AS IS" BASIS,
  8. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. # See the License for the specific language governing permissions and
  10. # limitations under the License.
  11. # ============================================================================
  12. import os
  13. from mindspore import context
  14. from mindspore.context import ParallelMode
  15. from mindspore.communication.management import init, get_rank, get_group_size
  16. from mindspore.train import Model
  17. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
  18. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  19. from mindspore.nn.optim import Adam
  20. from src.dataset import create_dataset
  21. from src.openposenet import OpenPoseNet
  22. from src.loss import openpose_loss, BuildTrainNetwork
  23. from src.config import params
  24. from src.utils import parse_args, get_lr, load_model, MyLossMonitor
  25. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
  26. def train():
  27. """Train function."""
  28. args = parse_args()
  29. args.outputs_dir = params['save_model_path']
  30. if args.group_size > 1:
  31. init()
  32. context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
  33. gradients_mean=True)
  34. args.outputs_dir = os.path.join(args.outputs_dir, "ckpt_{}/".format(str(get_rank())))
  35. args.rank = get_rank()
  36. else:
  37. args.outputs_dir = os.path.join(args.outputs_dir, "ckpt_0/")
  38. args.rank = 0
  39. # with out loss_scale
  40. if args.group_size > 1:
  41. args.loss_scale = params['loss_scale'] / 2
  42. args.lr_steps = list(map(int, params["lr_steps_NP"].split(',')))
  43. else:
  44. args.loss_scale = params['loss_scale']
  45. args.lr_steps = list(map(int, params["lr_steps"].split(',')))
  46. # create network
  47. print('start create network')
  48. criterion = openpose_loss()
  49. criterion.add_flags_recursive(fp32=True)
  50. network = OpenPoseNet(vggpath=params['vgg_path'])
  51. # network.add_flags_recursive(fp32=True)
  52. if params["load_pretrain"]:
  53. print("load pretrain model:", params["pretrained_model_path"])
  54. load_model(network, params["pretrained_model_path"])
  55. train_net = BuildTrainNetwork(network, criterion)
  56. # create dataset
  57. if os.path.exists(args.jsonpath_train) and os.path.exists(args.imgpath_train) \
  58. and os.path.exists(args.maskpath_train):
  59. print('start create dataset')
  60. else:
  61. print('Error: wrong data path')
  62. num_worker = 20 if args.group_size > 1 else 48
  63. de_dataset_train = create_dataset(args.jsonpath_train, args.imgpath_train, args.maskpath_train,
  64. batch_size=params['batch_size'],
  65. rank=args.rank,
  66. group_size=args.group_size,
  67. num_worker=num_worker,
  68. multiprocessing=True,
  69. shuffle=True,
  70. repeat_num=1)
  71. steps_per_epoch = de_dataset_train.get_dataset_size()
  72. print("steps_per_epoch: ", steps_per_epoch)
  73. # lr scheduler
  74. lr_stage, lr_base, lr_vgg = get_lr(params['lr'] * args.group_size,
  75. params['lr_gamma'],
  76. steps_per_epoch,
  77. params["max_epoch_train"],
  78. args.lr_steps,
  79. args.group_size)
  80. vgg19_base_params = list(filter(lambda x: 'base.vgg_base' in x.name, train_net.trainable_params()))
  81. base_params = list(filter(lambda x: 'base.conv' in x.name, train_net.trainable_params()))
  82. stages_params = list(filter(lambda x: 'base' not in x.name, train_net.trainable_params()))
  83. group_params = [{'params': vgg19_base_params, 'lr': lr_vgg},
  84. {'params': base_params, 'lr': lr_base},
  85. {'params': stages_params, 'lr': lr_stage}]
  86. opt = Adam(group_params, loss_scale=args.loss_scale)
  87. train_net.set_train(True)
  88. loss_scale_manager = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
  89. model = Model(train_net, optimizer=opt, loss_scale_manager=loss_scale_manager)
  90. params['ckpt_interval'] = max(steps_per_epoch, params['ckpt_interval'])
  91. config_ck = CheckpointConfig(save_checkpoint_steps=params['ckpt_interval'],
  92. keep_checkpoint_max=params["keep_checkpoint_max"])
  93. ckpoint_cb = ModelCheckpoint(prefix='{}'.format(args.rank), directory=args.outputs_dir, config=config_ck)
  94. time_cb = TimeMonitor(data_size=de_dataset_train.get_dataset_size())
  95. callback_list = [MyLossMonitor(), time_cb, ckpoint_cb]
  96. print("============== Starting Training ==============")
  97. model.train(params["max_epoch_train"], de_dataset_train, callbacks=callback_list,
  98. dataset_sink_mode=False)
  99. if __name__ == "__main__":
  100. # mindspore.common.seed.set_seed(1)
  101. train()