You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset.py 2.5 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. create train or eval dataset.
  17. """
  18. import os
  19. import mindspore.common.dtype as mstype
  20. import mindspore.dataset.engine as de
  21. import mindspore.dataset.transforms.vision.c_transforms as C
  22. import mindspore.dataset.transforms.c_transforms as C2
  23. from config import config
  24. def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
  25. """
  26. create a train or eval dataset
  27. Args:
  28. dataset_path(string): the path of dataset.
  29. do_train(bool): whether dataset is used for train or eval.
  30. repeat_num(int): the repeat times of dataset. Default: 1
  31. batch_size(int): the batch size of dataset. Default: 32
  32. Returns:
  33. dataset
  34. """
  35. device_num = int(os.getenv("DEVICE_NUM"))
  36. rank_id = int(os.getenv("RANK_ID"))
  37. if device_num == 1:
  38. ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True)
  39. else:
  40. ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True,
  41. num_shards=device_num, shard_id=rank_id)
  42. # define map operations
  43. trans = []
  44. if do_train:
  45. trans += [
  46. C.RandomCrop((32, 32), (4, 4, 4, 4)),
  47. C.RandomHorizontalFlip(prob=0.5)
  48. ]
  49. trans += [
  50. C.Resize((config.image_height, config.image_width)),
  51. C.Rescale(1.0 / 255.0, 0.0),
  52. C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
  53. C.HWC2CHW()
  54. ]
  55. type_cast_op = C2.TypeCast(mstype.int32)
  56. ds = ds.map(input_columns="label", num_parallel_workers=8, operations=type_cast_op)
  57. ds = ds.map(input_columns="image", num_parallel_workers=8, operations=trans)
  58. # apply batch operations
  59. ds = ds.batch(batch_size, drop_remainder=True)
  60. # apply dataset repeat operation
  61. ds = ds.repeat(repeat_num)
  62. return ds