|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """
- Bert evaluation script.
- """
-
- import os
- import numpy as np
- from evaluation_config import cfg, bert_net_cfg
- from utils import BertNER, BertCLS
- import mindspore.common.dtype as mstype
- from mindspore import context
- from mindspore.common.tensor import Tensor
- import mindspore.dataset as de
- import mindspore.dataset.transforms.c_transforms as C
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from CRF import postprocess
- from cluener_evaluation import submit
- from finetune_config import tag_to_index
-
- class Accuracy():
- '''
- calculate accuracy
- '''
- def __init__(self):
- self.acc_num = 0
- self.total_num = 0
- def update(self, logits, labels):
- labels = labels.asnumpy()
- labels = np.reshape(labels, -1)
- logits = logits.asnumpy()
- logit_id = np.argmax(logits, axis=-1)
- self.acc_num += np.sum(labels == logit_id)
- self.total_num += len(labels)
- print("=========================accuracy is ", self.acc_num / self.total_num)
-
- class F1():
- '''
- calculate F1 score
- '''
- def __init__(self):
- self.TP = 0
- self.FP = 0
- self.FN = 0
- def update(self, logits, labels):
- '''
- update F1 score
- '''
- labels = labels.asnumpy()
- labels = np.reshape(labels, -1)
- if cfg.use_crf:
- backpointers, best_tag_id = logits
- best_path = postprocess(backpointers, best_tag_id)
- logit_id = []
- for ele in best_path:
- logit_id.extend(ele)
- else:
- logits = logits.asnumpy()
- logit_id = np.argmax(logits, axis=-1)
- logit_id = np.reshape(logit_id, -1)
- pos_eva = np.isin(logit_id, [i for i in range(1, cfg.num_labels)])
- pos_label = np.isin(labels, [i for i in range(1, cfg.num_labels)])
- self.TP += np.sum(pos_eva&pos_label)
- self.FP += np.sum(pos_eva&(~pos_label))
- self.FN += np.sum((~pos_eva)&pos_label)
-
- def get_dataset(batch_size=1, repeat_count=1, distribute_file=''):
- '''
- get dataset
- '''
- ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask",
- "segment_ids", "label_ids"])
- type_cast_op = C.TypeCast(mstype.int32)
- ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
- ds = ds.map(input_columns="input_mask", operations=type_cast_op)
- ds = ds.map(input_columns="input_ids", operations=type_cast_op)
- ds = ds.map(input_columns="label_ids", operations=type_cast_op)
- ds = ds.repeat(repeat_count)
-
- # apply shuffle operation
- buffer_size = 960
- ds = ds.shuffle(buffer_size=buffer_size)
-
- # apply batch operations
- ds = ds.batch(batch_size, drop_remainder=True)
- return ds
-
- def bert_predict(Evaluation):
- '''
- prediction function
- '''
- devid = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid)
- dataset = get_dataset(bert_net_cfg.batch_size, 1)
- if cfg.use_crf:
- net_for_pretraining = Evaluation(bert_net_cfg, False, num_labels=len(tag_to_index), use_crf=True,
- tag_to_index=tag_to_index, dropout_prob=0.0)
- else:
- net_for_pretraining = Evaluation(bert_net_cfg, False, num_labels)
- net_for_pretraining.set_train(False)
- param_dict = load_checkpoint(cfg.finetune_ckpt)
- load_param_into_net(net_for_pretraining, param_dict)
- model = Model(net_for_pretraining)
- return model, dataset
-
- def test_eval():
- '''
- evaluation function
- '''
- task_type = BertNER if cfg.task == "NER" else BertCLS
- model, dataset = bert_predict(task_type)
- if cfg.clue_benchmark:
- submit(model, cfg.data_file, bert_net_cfg.seq_length)
- else:
- callback = F1() if cfg.task == "NER" else Accuracy()
- columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
- for data in dataset.create_dict_iterator():
- input_data = []
- for i in columns_list:
- input_data.append(Tensor(data[i]))
- input_ids, input_mask, token_type_id, label_ids = input_data
- logits = model.predict(input_ids, input_mask, token_type_id, label_ids)
- callback.update(logits, label_ids)
- print("==============================================================")
- if cfg.task == "NER":
- print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP)))
- print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN)))
- print("F1 {:.6f} ".format(2*callback.TP / (2*callback.TP + callback.FP + callback.FP)))
- else:
- print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
- callback.acc_num / callback.total_num))
- print("==============================================================")
-
- if __name__ == "__main__":
- num_labels = cfg.num_labels
- test_eval()
|