|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
- import mindspore.context as context
- from mindspore import Tensor
- from mindspore.nn import Cell
- import mindspore.ops.operations as P
-
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.matmul = P.MatMul(transpose_a=True, transpose_b=True)
-
- def construct(self, x, y):
- return self.matmul(x, y)
-
- class Net1(Cell):
- def __init__(self):
- super(Net1, self).__init__()
- self.matmul = P.MatMul(transpose_a=True, transpose_b=True)
- self.add = P.BiasAdd()
-
- def construct(self, x, y, bias):
- res = self.matmul(x, y)
- return self.add(res, bias)
-
- def get_output(i0, i1, enable_graph_kernel=False):
- context.set_context(enable_graph_kernel=enable_graph_kernel)
- net = Net()
- output = net(i0, i1)
- return output
-
- def get_output1(i0, i1, i2, enable_graph_kernel=False):
- context.set_context(enable_graph_kernel=enable_graph_kernel)
- net = Net1()
- output = net(i0, i1, i2)
- return output
-
- def test_basic():
- i0 = Tensor(np.random.normal(1, 0.01, [800, 96]).astype(np.float16))
- i1 = Tensor(np.random.normal(1, 0.01, [128, 800]).astype(np.float16))
- expect = get_output(i0, i1, False)
- output = get_output(i0, i1, True)
- expect_np = expect.asnumpy().copy()
- output_np = output.asnumpy().copy()
- assert np.allclose(expect_np, output_np, 1.e-4, 1.e-7)
-
- def test_basic1():
- i0 = Tensor(np.random.normal(1, 0.01, [800, 96]).astype(np.float16))
- i1 = Tensor(np.random.normal(1, 0.01, [128, 800]).astype(np.float16))
- i2 = Tensor(np.random.normal(100, 0.01, [128,]).astype(np.float16))
- expect = get_output1(i0, i1, i2, False)
- output = get_output1(i0, i1, i2, True)
- expect_np = expect.asnumpy().copy()
- output_np = output.asnumpy().copy()
- assert np.allclose(expect_np, output_np, 6.e-4, 6.e-4)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_basic_ascend():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- test_basic()
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_basic_ascend1():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- test_basic1()
|