|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
- import mindspore.context as context
- from mindspore import Tensor
- from mindspore.nn import Cell
- import mindspore.ops.operations as P
-
-
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.add = P.Add()
- self.mul = P.Mul()
-
- def construct(self, x):
- mul_res = self.mul(x, x)
- square_res = P.Square()(x)
- return self.add(mul_res, square_res)
-
-
- def test_basic():
- input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
- mul_res = input_x * input_x
- square_res = np.square(input_x)
- expect = mul_res + square_res
-
- net = Net()
- result = net(Tensor(input_x))
-
- res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
- assert res
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_basic_gpu():
- context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
- test_basic()
-
-
- def test_basic_ascend():
- context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
- test_basic()
|