|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor, ops
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.round = ops.Round()
-
- def construct(self, x):
- return self.round(x)
-
-
- def generate_testcases(nptype):
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- x = np.array([0.9920, -0.4077, 0.9734, -1.0362, 1.5, -2.5, 4.5]).astype(nptype)
- net = Net()
- output = net(Tensor(x))
- expect = np.round(x).astype(nptype)
- np.testing.assert_almost_equal(output.asnumpy(), expect)
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- x = np.array([0.9920, -0.4077, 0.9734, -1.0362, 1.5, -2.5, 4.5]).astype(nptype)
- net = Net()
- output = net(Tensor(x))
- expect = np.round(x).astype(nptype)
- np.testing.assert_almost_equal(output.asnumpy(), expect)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_sign_float32():
- generate_testcases(np.float32)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_sign_float16():
- generate_testcases(np.float16)
|