You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_range_op.py 6.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.common.dtype as mstype
  18. import mindspore.context as context
  19. import mindspore.nn as nn
  20. from mindspore import Tensor
  21. from mindspore.ops import operations as P
  22. class RangeNet(nn.Cell):
  23. def __init__(self, maxlen=50):
  24. super(RangeNet, self).__init__()
  25. self.range = P.Range(maxlen)
  26. def construct(self, start, limit, delta):
  27. return self.range(start, limit, delta)
  28. @pytest.mark.level0
  29. @pytest.mark.platform_x86_gpu_training
  30. @pytest.mark.env_onecard
  31. def test_range_precision_end_equals_last_element():
  32. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  33. range_net = RangeNet(100)
  34. ms_out = range_net(Tensor(1000.04, mstype.float32),
  35. Tensor(1001.04, mstype.float32),
  36. Tensor(0.01, mstype.float32)).asnumpy()
  37. np_expected = np.arange(1000.04, 1001.04, 0.01, dtype=np.float32)
  38. np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
  39. range_net = RangeNet(1000)
  40. ms_out = range_net(Tensor(100, mstype.float32),
  41. Tensor(101, mstype.float32),
  42. Tensor(0.001, mstype.float32)).asnumpy()
  43. np_expected = np.arange(100, 101, 0.001, dtype=np.float32)
  44. np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
  45. range_net = RangeNet(799900)
  46. ms_out = range_net(Tensor(1, mstype.float32),
  47. Tensor(8000, mstype.float32),
  48. Tensor(0.01, mstype.float32)).asnumpy()
  49. np_expected = np.arange(1, 8000, 0.01, dtype=np.float32)
  50. np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
  51. range_net = RangeNet(53)
  52. ms_out = range_net(Tensor(-12000, mstype.float32),
  53. Tensor(-12053, mstype.float32),
  54. Tensor(-1, mstype.float32)).asnumpy()
  55. np_expected = np.arange(-12000, -12053, -1, dtype=np.float32)
  56. np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
  57. @pytest.mark.level0
  58. @pytest.mark.platform_x86_gpu_training
  59. @pytest.mark.env_onecard
  60. def test_range_int():
  61. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  62. range_net = RangeNet()
  63. ms_out = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy()
  64. np_expected = np.array([2, 3, 4])
  65. np.testing.assert_array_equal(ms_out, np_expected)
  66. range_net = RangeNet()
  67. ms_out = range_net(Tensor(-24, mstype.int32), Tensor(1, mstype.int32), Tensor(4, mstype.int32)).asnumpy()
  68. np_expected = np.array([-24, -20, -16, -12, -8, -4, 0])
  69. np.testing.assert_array_equal(ms_out, np_expected)
  70. range_net = RangeNet()
  71. ms_out = range_net(Tensor(8, mstype.int32), Tensor(1, mstype.int32), Tensor(-1, mstype.int32)).asnumpy()
  72. np_expected = np.array([8, 7, 6, 5, 4, 3, 2])
  73. np.testing.assert_array_equal(ms_out, np_expected)
  74. range_net = RangeNet()
  75. ms_out = range_net(Tensor(3, mstype.int32), Tensor(-11, mstype.int32), Tensor(-5, mstype.int32)).asnumpy()
  76. np_expected = np.array([3, -2, -7])
  77. np.testing.assert_array_equal(ms_out, np_expected)
  78. @pytest.mark.level0
  79. @pytest.mark.platform_x86_gpu_training
  80. @pytest.mark.env_onecard
  81. def test_range_float():
  82. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  83. range_net = RangeNet()
  84. ms_out = range_net(Tensor(2.3, mstype.float32), Tensor(5.5, mstype.float32), Tensor(1.2, mstype.float32)).asnumpy()
  85. np_expected = np.array([2.3, 3.5, 4.7])
  86. np.testing.assert_array_almost_equal(ms_out, np_expected)
  87. range_net = RangeNet()
  88. ms_out = range_net(Tensor(-4, mstype.float32), Tensor(-1, mstype.float32), Tensor(1.5, mstype.float32)).asnumpy()
  89. np_expected = np.array([-4.0, -2.5])
  90. np.testing.assert_array_almost_equal(ms_out, np_expected)
  91. range_net = RangeNet()
  92. ms_out = range_net(Tensor(8.0, mstype.float32), Tensor(1.0, mstype.float32), Tensor(-1.0, mstype.float32)).asnumpy()
  93. np_expected = np.array([8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0])
  94. np.testing.assert_array_almost_equal(ms_out, np_expected)
  95. range_net = RangeNet()
  96. ms_out = range_net(Tensor(1.5, mstype.float32), Tensor(-1, mstype.float32), Tensor(-18.9, mstype.float32)).asnumpy()
  97. np_expected = np.array([1.5])
  98. np.testing.assert_array_almost_equal(ms_out, np_expected)
  99. @pytest.mark.level0
  100. @pytest.mark.platform_x86_gpu_training
  101. @pytest.mark.env_onecard
  102. def test_range_invalid_max_output_length():
  103. with pytest.raises(ValueError):
  104. _ = P.Range(0)
  105. _ = P.Range(-1)
  106. _ = P.Range(None)
  107. _ = P.Range('5')
  108. @pytest.mark.level0
  109. @pytest.mark.platform_x86_gpu_training
  110. @pytest.mark.env_onecard
  111. def test_range_invalid_input():
  112. with pytest.raises(RuntimeError) as info:
  113. range_net = RangeNet()
  114. _ = range_net(Tensor(0, mstype.int32), Tensor(5, mstype.int32), Tensor(0, mstype.int32)).asnumpy()
  115. assert "delta cannot be equal to zero" in str(info.value)
  116. with pytest.raises(RuntimeError) as info:
  117. range_net = RangeNet(2)
  118. _ = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy()
  119. assert "number of elements in the output exceeds maxlen" in str(info.value)
  120. with pytest.raises(RuntimeError) as info:
  121. range_net = RangeNet()
  122. _ = range_net(Tensor(20, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy()
  123. assert "delta cannot be positive when limit < start" in str(info.value)
  124. with pytest.raises(RuntimeError) as info:
  125. range_net = RangeNet()
  126. _ = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(-4, mstype.int32)).asnumpy()
  127. assert "delta cannot be negative when limit > start" in str(info.value)