You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_prelu_op.py 2.6 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class NetPReLU(nn.Cell):
  22. def __init__(self):
  23. super(NetPReLU, self).__init__()
  24. self.prelu = P.PReLU()
  25. def construct(self, x, weight):
  26. return self.prelu(x, weight)
  27. @pytest.mark.level0
  28. @pytest.mark.platform_x86_gpu_training
  29. @pytest.mark.env_onecard
  30. def test_prelu_float16():
  31. weight = Tensor(np.array([0.25]).astype(np.float16))
  32. x = Tensor(np.array([[[[-1, 1, 10],
  33. [1, -1, 1],
  34. [10, 1, -1]]]]).astype(np.float16))
  35. expect = np.array([[[[-0.25, 1, 10,],
  36. [1, -0.25, 1,],
  37. [10, 1, -0.25]]]]).astype(np.float16)
  38. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  39. prelu = NetPReLU()
  40. output = prelu(x, weight)
  41. assert (output.asnumpy() == expect).all()
  42. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  43. prelu = NetPReLU()
  44. output = prelu(x, weight)
  45. assert (output.asnumpy() == expect).all()
  46. @pytest.mark.level0
  47. @pytest.mark.platform_x86_gpu_training
  48. @pytest.mark.env_onecard
  49. def test_prelu_float32():
  50. weight = Tensor(np.array([0.25]).astype(np.float32))
  51. x = Tensor(np.array([[[[-1, 1, 10],
  52. [1, -1, 1],
  53. [10, 1, -1]]]]).astype(np.float32))
  54. expect = np.array([[[[-0.25, 1, 10,],
  55. [1, -0.25, 1,],
  56. [10, 1, -0.25]]]]).astype(np.float32)
  57. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  58. prelu = NetPReLU()
  59. output = prelu(x, weight)
  60. assert (output.asnumpy() == expect).all()
  61. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  62. prelu = NetPReLU()
  63. output = prelu(x, weight)
  64. assert (output.asnumpy() == expect).all()