You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_multinomial_op.py 1.8 kB

5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. from mindspore.ops import composite as C
  18. import mindspore.context as context
  19. import mindspore.nn as nn
  20. from mindspore import Tensor
  21. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  22. class Net(nn.Cell):
  23. def __init__(self, sample, replacement, seed=0):
  24. super(Net, self).__init__()
  25. self.sample = sample
  26. self.replacement = replacement
  27. self.seed = seed
  28. def construct(self, x):
  29. return C.multinomial(x, self.sample, self.replacement, self.seed)
  30. @pytest.mark.level0
  31. @pytest.mark.platform_x86_gpu_training
  32. @pytest.mark.env_onecard
  33. def test_multinomial():
  34. x0 = Tensor(np.array([0.9, 0.2]).astype(np.float32))
  35. x1 = Tensor(np.array([[0.9, 0.2], [0.9, 0.2]]).astype(np.float32))
  36. net0 = Net(1, True, 20)
  37. net1 = Net(2, True, 20)
  38. net2 = Net(6, True, 20)
  39. out0 = net0(x0)
  40. out1 = net1(x0)
  41. out2 = net2(x1)
  42. assert out0.asnumpy().shape == (1,)
  43. assert out1.asnumpy().shape == (2,)
  44. assert out2.asnumpy().shape == (2, 6)