You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_log1p_op.py 1.8 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. from mindspore import dtype
  22. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  23. class NetLog1p(nn.Cell):
  24. def __init__(self):
  25. super(NetLog1p, self).__init__()
  26. self.log1p = P.Log1p()
  27. def construct(self, x):
  28. return self.log1p(x)
  29. @pytest.mark.level0
  30. @pytest.mark.platform_x86_gpu_training
  31. @pytest.mark.env_onecard
  32. def test_log1p_fp32():
  33. log1p = NetLog1p()
  34. x = np.random.rand(3, 8).astype(np.float32)
  35. output = log1p(Tensor(x, dtype=dtype.float32))
  36. expect = np.log1p(x)
  37. tol = 1e-6
  38. assert (np.abs(output.asnumpy() - expect) < tol).all()
  39. @pytest.mark.level0
  40. @pytest.mark.platform_x86_gpu_training
  41. @pytest.mark.env_onecard
  42. def test_log1p_fp16():
  43. log1p = NetLog1p()
  44. x = np.random.rand(3, 8).astype(np.float16)
  45. output = log1p(Tensor(x, dtype=dtype.float16))
  46. expect = np.log1p(x)
  47. tol = 1e-3
  48. assert (np.abs(output.asnumpy() - expect) < tol).all()