|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.common.dtype as mstype
- import mindspore.context as context
- from mindspore.common.tensor import Tensor
- from mindspore.nn import Cell
- from mindspore.ops import operations as P
-
- class LinSpaceNet(Cell):
- def __init__(self, num):
- super(LinSpaceNet, self).__init__()
- self.ls_op = P.LinSpace()
- self.num = num
-
- def construct(self, start, stop):
- output = self.ls_op(start, stop, self.num)
- return output
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_lin_space_1():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- start_np = 5
- stop_np = 150
- num_np = 12
- start = Tensor(start_np, dtype=mstype.float32)
- stop = Tensor(stop_np, dtype=mstype.float32)
- num = num_np
- ls_op = P.LinSpace()
- result_ms = ls_op(start, stop, num).asnumpy()
- result_np = np.linspace(start_np, stop_np, num_np)
- assert np.allclose(result_ms, result_np)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_lin_shape_2():
- context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
- start_np = -25
- stop_np = 147
- num_np = 10
- start = Tensor(start_np, dtype=mstype.float32)
- stop = Tensor(stop_np, dtype=mstype.float32)
- num = num_np
- ls_op = P.LinSpace()
- result_ms = ls_op(start, stop, num).asnumpy()
- result_np = np.linspace(start_np, stop_np, num_np)
- assert np.allclose(result_ms, result_np)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_lin_shape_3():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- start_np = 25
- stop_np = -147
- num_np = 20
- start = Tensor(start_np, dtype=mstype.float32)
- stop = Tensor(stop_np, dtype=mstype.float32)
- net = LinSpaceNet(num_np)
- result_ms = net(start, stop).asnumpy()
- result_np = np.linspace(start_np, stop_np, num_np)
- assert np.allclose(result_ms, result_np)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_lin_shape_4():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- start_np = -25.3
- stop_np = -147
- num_np = 36
- start = Tensor(start_np, dtype=mstype.float32)
- stop = Tensor(stop_np, dtype=mstype.float32)
- net = LinSpaceNet(num_np)
- result_ms = net(start, stop).asnumpy()
- result_np = np.linspace(start_np, stop_np, num_np)
- assert np.allclose(result_ms, result_np)
|