You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_instancenorm2d.py 2.4 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.common.api import ms_function
  21. from mindspore.ops import functional as F
  22. from mindspore.ops.composite import GradOperation
  23. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  24. class Grad(nn.Cell):
  25. def __init__(self, network):
  26. super(Grad, self).__init__()
  27. self.grad = GradOperation(get_all=True, sens_param=True)
  28. self.network = network
  29. @ms_function
  30. def construct(self, input_x, grad):
  31. return self.grad(self.network)(input_x, grad)
  32. class Net(nn.Cell):
  33. def __init__(self, n):
  34. super(Net, self).__init__()
  35. self.ops = nn.BatchNorm2d(n, use_batch_statistics=True, gamma_init=0.5, beta_init=0.5)
  36. def construct(self, x):
  37. shape = F.shape(x)
  38. return F.reshape(self.ops(F.reshape(x, (1, -1, shape[2], shape[3]))), shape)
  39. @pytest.mark.level0
  40. @pytest.mark.platform_x86_gpu_training
  41. @pytest.mark.env_onecard
  42. def test_InstanceNorm2d_fp32():
  43. x_np = np.random.randn(3, 3, 2, 2).astype(np.float32)
  44. bn_instance_comp = Net(3 * 3)
  45. bn_instance_op = nn.InstanceNorm2d(3, use_batch_statistics=True, gamma_init=0.5, beta_init=0.5)
  46. comp_out = bn_instance_comp(Tensor(x_np))
  47. op_out = bn_instance_op(Tensor(x_np))
  48. assert np.allclose(comp_out.asnumpy(), op_out.asnumpy())
  49. sens = np.random.randn(3, 3, 2, 2).astype(np.float32)
  50. bn_comp_backward_net = Grad(bn_instance_comp)
  51. bn_op_backward_net = Grad(bn_instance_op)
  52. output1 = bn_comp_backward_net(Tensor(x_np), Tensor(sens))
  53. output2 = bn_op_backward_net(Tensor(x_np), Tensor(sens))
  54. assert np.allclose(output1[0].asnumpy(), output2[0].asnumpy())