|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
-
- class NetFlatten(nn.Cell):
- def __init__(self):
- super(NetFlatten, self).__init__()
- self.flatten = P.Flatten()
-
- def construct(self, x):
- return self.flatten(x)
-
-
- class NetAllFlatten(nn.Cell):
- def __init__(self):
- super(NetAllFlatten, self).__init__()
- self.flatten = P.Flatten()
-
- def construct(self, x):
- loop_count = 4
- while loop_count > 0:
- x = self.flatten(x)
- loop_count = loop_count - 1
- return x
-
-
- class NetFirstFlatten(nn.Cell):
- def __init__(self):
- super(NetFirstFlatten, self).__init__()
- self.flatten = P.Flatten()
- self.relu = P.ReLU()
-
- def construct(self, x):
- loop_count = 4
- while loop_count > 0:
- x = self.flatten(x)
- loop_count = loop_count - 1
- x = self.relu(x)
- return x
-
-
- class NetLastFlatten(nn.Cell):
- def __init__(self):
- super(NetLastFlatten, self).__init__()
- self.flatten = P.Flatten()
- self.relu = P.ReLU()
-
- def construct(self, x):
- loop_count = 4
- x = self.relu(x)
- while loop_count > 0:
- x = self.flatten(x)
- loop_count = loop_count - 1
- return x
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_flatten():
- x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
- expect = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- flatten = NetFlatten()
- output = flatten(x)
- assert (output.asnumpy() == expect).all()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- flatten = NetFlatten()
- output = flatten(x)
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_all_flatten():
- x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
- expect = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- flatten = NetAllFlatten()
- output = flatten(x)
- assert (output.asnumpy() == expect).all()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- flatten = NetAllFlatten()
- output = flatten(x)
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_first_flatten():
- x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
- expect = np.array([[0, 0.3, 3.6], [0.4, 0.5, 0]]).astype(np.float32)
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- flatten = NetFirstFlatten()
- output = flatten(x)
- assert (output.asnumpy() == expect).all()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- flatten = NetFirstFlatten()
- output = flatten(x)
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_last_flatten():
- x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
- expect = np.array([[0, 0.3, 3.6], [0.4, 0.5, 0]]).astype(np.float32)
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- flatten = NetLastFlatten()
- output = flatten(x)
- assert (output.asnumpy() == expect).all()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- flatten = NetLastFlatten()
- output = flatten(x)
- assert (output.asnumpy() == expect).all()
-
|