You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_div_op.py 3.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121
  1. # Copyright 2020-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class NetDiv(nn.Cell):
  22. def __init__(self):
  23. super(NetDiv, self).__init__()
  24. self.div = P.Div()
  25. def construct(self, x, y):
  26. return self.div(x, y)
  27. def div(nptype):
  28. x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
  29. y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
  30. x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
  31. y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(nptype)
  32. x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(nptype)
  33. y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
  34. x3_np = np.random.randint(1, 5, 1).astype(nptype)
  35. y3_np = np.random.randint(1, 5, 1).astype(nptype)
  36. x4_np = np.array(78).astype(nptype)
  37. y4_np = np.array(37.5).astype(nptype)
  38. x0 = Tensor(x0_np)
  39. y0 = Tensor(y0_np)
  40. x1 = Tensor(x1_np)
  41. y1 = Tensor(y1_np)
  42. x2 = Tensor(x2_np)
  43. y2 = Tensor(y2_np)
  44. x3 = Tensor(x3_np)
  45. y3 = Tensor(y3_np)
  46. x4 = Tensor(x4_np)
  47. y4 = Tensor(y4_np)
  48. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  49. div_net = NetDiv()
  50. output0 = div_net(x0, y0)
  51. expect0 = np.divide(x0_np, y0_np)
  52. diff0 = output0.asnumpy() - expect0
  53. error0 = np.ones(shape=expect0.shape) * 1.0e-5
  54. assert np.all(diff0 < error0)
  55. assert output0.shape == expect0.shape
  56. output1 = div_net(x1, y1)
  57. expect1 = np.divide(x1_np, y1_np)
  58. diff1 = output1.asnumpy() - expect1
  59. error1 = np.ones(shape=expect1.shape) * 1.0e-5
  60. assert np.all(diff1 < error1)
  61. assert output1.shape == expect1.shape
  62. output2 = div_net(x2, y2)
  63. expect2 = np.divide(x2_np, y2_np)
  64. diff2 = output2.asnumpy() - expect2
  65. error2 = np.ones(shape=expect2.shape) * 1.0e-5
  66. assert np.all(diff2 < error2)
  67. assert output2.shape == expect2.shape
  68. context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
  69. output3 = div_net(x3, y3)
  70. expect3 = np.divide(x3_np, y3_np)
  71. diff3 = output3.asnumpy() - expect3
  72. error3 = np.ones(shape=expect3.shape) * 1.0e-5
  73. assert np.all(diff3 < error3)
  74. assert output3.shape == expect3.shape
  75. output4 = div_net(x4, y4)
  76. expect4 = np.divide(x4_np, y4_np)
  77. diff4 = output4.asnumpy() - expect4
  78. error4 = np.ones(shape=expect4.shape) * 1.0e-5
  79. assert np.all(diff4 < error4)
  80. assert output4.shape == expect4.shape
  81. @pytest.mark.level0
  82. @pytest.mark.platform_x86_gpu_training
  83. @pytest.mark.env_onecard
  84. def test_div_float64():
  85. div(np.float64)
  86. @pytest.mark.level0
  87. @pytest.mark.platform_x86_gpu_training
  88. @pytest.mark.env_onecard
  89. def test_div_float32():
  90. div(np.float32)
  91. @pytest.mark.level0
  92. @pytest.mark.platform_x86_gpu_training
  93. @pytest.mark.env_onecard
  94. def test_div_float16():
  95. div(np.float16)
  96. @pytest.mark.level0
  97. @pytest.mark.platform_x86_gpu_training
  98. @pytest.mark.env_onecard
  99. def test_div_int64():
  100. div(np.int64)
  101. @pytest.mark.level0
  102. @pytest.mark.platform_x86_gpu_training
  103. @pytest.mark.env_onecard
  104. def test_div_int32():
  105. div(np.int32)