You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_dense.py 1.8 kB

5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore.context as context
  17. import mindspore.nn as nn
  18. from mindspore import Tensor
  19. context.set_context(device_target="GPU")
  20. class Net(nn.Cell):
  21. def __init__(self):
  22. super(Net, self).__init__()
  23. self.dense = nn.Dense(2048, 1001)
  24. def construct(self, x):
  25. return self.dense(x)
  26. class MultiLayerDense(nn.Cell):
  27. def __init__(self):
  28. super(MultiLayerDense, self).__init__()
  29. self.dense1 = nn.Dense(in_channels=256, out_channels=512)
  30. self.dense2 = nn.Dense(in_channels=512, out_channels=1024)
  31. def construct(self, x):
  32. x = self.dense1(x)
  33. x = self.dense2(x)
  34. return x
  35. def test_net():
  36. x = np.random.randn(32, 2048).astype(np.float32)
  37. net = Net()
  38. output = net(Tensor(x))
  39. print(x)
  40. print(output.asnumpy())
  41. def test_net_ND():
  42. x = np.random.randn(2, 332, 2048).astype(np.float32)
  43. net = Net()
  44. output = net(Tensor(x))
  45. print(x)
  46. print(output.asnumpy())
  47. def test_net_multilayer():
  48. x = np.random.randn(16, 32, 256).astype(np.float32)
  49. net = MultiLayerDense()
  50. output = net(Tensor(x))
  51. print(x)
  52. print(output.asnumpy())