|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.common.dtype as mstype
- import mindspore.context as context
- from mindspore.common.tensor import Tensor
- from mindspore.nn import Cell
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _inner_ops as inner
-
-
- class Net(Cell):
- def __init__(self, type0, type1):
- super(Net, self).__init__()
- self.Cast = P.Cast()
- self.type0 = type0
- self.type1 = type1
-
- def construct(self, x0, x1):
- output = (self.Cast(x0, self.type0),
- self.Cast(x1, self.type1))
- return output
-
-
- class NetDynamic(Cell):
- def __init__(self, type0, type1):
- super(NetDynamic, self).__init__()
- self.conv = inner.GpuConvertToDynamicShape()
- self.Cast = P.Cast()
- self.type0 = type0
- self.type1 = type1
-
- def construct(self, x0, x1):
- x0_conv = self.conv(x0)
- x1_conv = self.conv(x1)
- output = (self.Cast(x0_conv, self.type0),
- self.Cast(x1_conv, self.type1))
- return output
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.float16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
- t1 = mstype.float32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float32'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast1():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t0 = mstype.float32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t1 = mstype.float32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast2():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
- t0 = mstype.int32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
- t1 = mstype.float64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float64'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast3():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
- t0 = mstype.int32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.int32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast4():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t0 = mstype.float16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t1 = mstype.int8
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int8'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast5():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t0 = mstype.uint8
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t1 = mstype.bool_
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'uint8'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'bool'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast6():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t0 = mstype.float64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t1 = mstype.float32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast7():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t0 = mstype.float32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast8():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t0 = mstype.int32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t1 = mstype.int16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast9():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t0 = mstype.int64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast10():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t0 = mstype.int8
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t1 = mstype.float64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int8'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float64'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast11():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t0 = mstype.int16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t1 = mstype.int32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast12():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
- t0 = mstype.int64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
- t1 = mstype.float32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast13():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
- t0 = mstype.int32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast14():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t0 = mstype.float64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t1 = mstype.float32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast15():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t0 = mstype.float16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t1 = mstype.int32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast16():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t0 = mstype.float16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
- t1 = mstype.float64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float64'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast17():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t0 = mstype.float32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast18():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
- t0 = mstype.float32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast19():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
- t0 = mstype.bool_
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
- t1 = mstype.bool_
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'bool'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'bool'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast20():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
- t0 = mstype.bool_
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
- t1 = mstype.bool_
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'bool'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'bool'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast21():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.bool_
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t1 = mstype.bool_
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'bool'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'bool'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast22():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
- t0 = mstype.bool_
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t1 = mstype.bool_
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'bool'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'bool'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast23():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t0 = mstype.float32
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t1 = mstype.float16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float32'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast24():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t0 = mstype.int64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t1 = mstype.int32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast25():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t0 = mstype.int16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
- t1 = mstype.int8
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int8'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast26():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t0 = mstype.int64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
- t1 = mstype.float64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float64'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast27():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.float64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.uint64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'float64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'uint64'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast28():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.int8
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.int16
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int8'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'int16'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast29():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.int64
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.uint8
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int64'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'uint8'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast30():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.uint16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.uint32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'uint16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'uint32'
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast31():
- x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t0 = mstype.uint16
- x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
- t1 = mstype.uint32
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = NetDynamic(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'uint16'
- type1 = output[1].asnumpy().dtype
- assert type1 == 'uint32'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_cast32():
- np.random.seed(10)
- x = np.random.uniform(-5, 5, (3, 2)).astype(np.float16)
- x0 = Tensor(x)
- t0 = mstype.int32
- x1 = Tensor(x)
- t1 = mstype.float64
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = Net(t0, t1)
- output = net(x0, x1)
- type0 = output[0].asnumpy().dtype
- assert type0 == 'int32'
- expected = x.astype(np.int32)
- assert (output[0].asnumpy() == expected).all()
- type1 = output[1].asnumpy().dtype
- assert type1 == 'float64'
|