|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- from mindspore.common.tensor import Tensor
- from mindspore.ops import operations as P
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_nobroadcast():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
-
- np.random.seed(42)
- x1_np = np.random.rand(10, 20).astype(np.float32)
- x2_np = np.random.rand(10, 20).astype(np.float32)
- x1_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32)
- x2_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32)
-
- output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.minimum(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.maximum(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np > x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
- output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
- output_np = x1_np_int32 > x2_np_int32
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np < x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
- output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
- output_np = x1_np_int32 < x2_np_int32
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.power(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np / x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np * x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np - x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np / x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- x2_np_zero = np.zeros_like(x2_np)
- output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
- assert np.allclose(output_ms.asnumpy(), x2_np_zero)
-
- output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.fmod(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.FloorMod()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.mod(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_nobroadcast_fp16():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
-
- np.random.seed(42)
- x1_np = np.random.rand(10, 20).astype(np.float16)
- x2_np = np.random.rand(10, 20).astype(np.float16)
-
- output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.minimum(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.maximum(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np > x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np < x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.power(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np / x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np * x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np - x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np / x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- x2_np_zero = np.zeros_like(x2_np)
- output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
- assert np.allclose(output_ms.asnumpy(), x2_np_zero)
-
- output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.fmod(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.FloorMod()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.mod(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_broadcast():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
-
- np.random.seed(42)
- x1_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
- x2_np = np.random.rand(1, 4, 1, 6).astype(np.float32)
- x1_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32)
- x2_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32)
-
- output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.minimum(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.maximum(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np > x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
- output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
- output_np = x1_np_int32 > x2_np_int32
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np < x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
- output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
- output_np = x1_np_int32 < x2_np_int32
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.power(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np / x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np * x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np - x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np / x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- x2_np_zero = np.zeros_like(x2_np)
- output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
- assert np.allclose(output_ms.asnumpy(), x2_np_zero)
-
- output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.fmod(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.FloorMod()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.mod(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_broadcast_diff_dims():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
-
- np.random.seed(42)
- x1_np = np.random.rand(2).astype(np.float32)
- x2_np = np.random.rand(2, 1).astype(np.float32)
- x1_np_int32 = np.random.randint(0, 100, (2)).astype(np.int32)
- x2_np_int32 = np.random.randint(0, 100, (2, 1)).astype(np.int32)
-
- output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.minimum(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.maximum(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
- output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
- output_np = x1_np_int32 > x2_np_int32
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np > x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np < x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
- output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
- output_np = x1_np_int32 < x2_np_int32
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.power(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np / x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np * x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np - x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np / x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- x2_np_zero = np.zeros_like(x2_np)
- output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
- assert np.allclose(output_ms.asnumpy(), x2_np_zero)
-
- output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.fmod(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.FloorMod()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.mod(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_broadcast_fp16():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
-
- np.random.seed(42)
- x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16)
- x2_np = np.random.rand(1, 4, 1, 6).astype(np.float16)
-
- output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.minimum(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.maximum(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np > x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np < x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.power(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np / x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np * x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np - x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np))
- output_np = x1_np / x2_np
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- x2_np_zero = np.zeros_like(x2_np)
- output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
- assert np.allclose(output_ms.asnumpy(), x2_np_zero)
-
- output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.fmod(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- output_ms = P.FloorMod()(Tensor(x1_np), Tensor(x2_np))
- output_np = np.mod(x1_np, x2_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_divnonan_int8():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
-
- np.random.seed(42)
- x1_np_int8 = np.random.randint(1, 100, (10, 20)).astype(np.int8)
- x2_np_int8 = np.random.randint(1, 100, (10, 20)).astype(np.int8)
-
- output_ms = P.DivNoNan()(Tensor(x1_np_int8), Tensor(x2_np_int8))
- output_np = x1_np_int8 // x2_np_int8
- print(output_ms.asnumpy(), output_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- x2_np_zero = np.zeros_like(x2_np_int8)
- output_ms = P.DivNoNan()(Tensor(x1_np_int8), Tensor(x2_np_zero))
- assert np.allclose(output_ms.asnumpy(), x2_np_zero)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_divnonan_uint8():
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
-
- np.random.seed(42)
- x1_np_uint8 = np.random.randint(1, 100, (10, 20)).astype(np.uint8)
- x2_np_uint8 = np.random.randint(1, 100, (10, 20)).astype(np.uint8)
-
- output_ms = P.DivNoNan()(Tensor(x1_np_uint8), Tensor(x2_np_uint8))
- output_np = x1_np_uint8 // x2_np_uint8
- print(output_ms.asnumpy(), output_np)
- assert np.allclose(output_ms.asnumpy(), output_np)
-
- x2_np_zero = np.zeros_like(x2_np_uint8)
- output_ms = P.DivNoNan()(Tensor(x1_np_uint8), Tensor(x2_np_zero))
- assert np.allclose(output_ms.asnumpy(), x2_np_zero)
|