You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_broadcast_op.py 14 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. from mindspore.common.tensor import Tensor
  19. from mindspore.ops import operations as P
  20. @pytest.mark.level0
  21. @pytest.mark.platform_x86_gpu_training
  22. @pytest.mark.env_onecard
  23. def test_nobroadcast():
  24. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  25. np.random.seed(42)
  26. x1_np = np.random.rand(10, 20).astype(np.float32)
  27. x2_np = np.random.rand(10, 20).astype(np.float32)
  28. x1_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32)
  29. x2_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32)
  30. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  31. output_np = np.minimum(x1_np, x2_np)
  32. assert np.allclose(output_ms.asnumpy(), output_np)
  33. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  34. output_np = np.maximum(x1_np, x2_np)
  35. assert np.allclose(output_ms.asnumpy(), output_np)
  36. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  37. output_np = x1_np > x2_np
  38. assert np.allclose(output_ms.asnumpy(), output_np)
  39. output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  40. output_np = x1_np_int32 > x2_np_int32
  41. assert np.allclose(output_ms.asnumpy(), output_np)
  42. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  43. output_np = x1_np < x2_np
  44. assert np.allclose(output_ms.asnumpy(), output_np)
  45. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  46. output_np = x1_np_int32 < x2_np_int32
  47. assert np.allclose(output_ms.asnumpy(), output_np)
  48. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  49. output_np = np.power(x1_np, x2_np)
  50. assert np.allclose(output_ms.asnumpy(), output_np)
  51. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  52. output_np = x1_np / x2_np
  53. assert np.allclose(output_ms.asnumpy(), output_np)
  54. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  55. output_np = x1_np * x2_np
  56. assert np.allclose(output_ms.asnumpy(), output_np)
  57. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  58. output_np = x1_np - x2_np
  59. assert np.allclose(output_ms.asnumpy(), output_np)
  60. output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np))
  61. output_np = x1_np / x2_np
  62. assert np.allclose(output_ms.asnumpy(), output_np)
  63. x2_np_zero = np.zeros_like(x2_np)
  64. output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
  65. assert np.allclose(output_ms.asnumpy(), x2_np_zero)
  66. output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
  67. output_np = np.fmod(x1_np, x2_np)
  68. assert np.allclose(output_ms.asnumpy(), output_np)
  69. output_ms = P.FloorMod()(Tensor(x1_np), Tensor(x2_np))
  70. output_np = np.mod(x1_np, x2_np)
  71. assert np.allclose(output_ms.asnumpy(), output_np)
  72. @pytest.mark.level0
  73. @pytest.mark.platform_x86_gpu_training
  74. @pytest.mark.env_onecard
  75. def test_nobroadcast_fp16():
  76. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  77. np.random.seed(42)
  78. x1_np = np.random.rand(10, 20).astype(np.float16)
  79. x2_np = np.random.rand(10, 20).astype(np.float16)
  80. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  81. output_np = np.minimum(x1_np, x2_np)
  82. assert np.allclose(output_ms.asnumpy(), output_np)
  83. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  84. output_np = np.maximum(x1_np, x2_np)
  85. assert np.allclose(output_ms.asnumpy(), output_np)
  86. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  87. output_np = x1_np > x2_np
  88. assert np.allclose(output_ms.asnumpy(), output_np)
  89. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  90. output_np = x1_np < x2_np
  91. assert np.allclose(output_ms.asnumpy(), output_np)
  92. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  93. output_np = np.power(x1_np, x2_np)
  94. assert np.allclose(output_ms.asnumpy(), output_np)
  95. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  96. output_np = x1_np / x2_np
  97. assert np.allclose(output_ms.asnumpy(), output_np)
  98. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  99. output_np = x1_np * x2_np
  100. assert np.allclose(output_ms.asnumpy(), output_np)
  101. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  102. output_np = x1_np - x2_np
  103. assert np.allclose(output_ms.asnumpy(), output_np)
  104. output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np))
  105. output_np = x1_np / x2_np
  106. assert np.allclose(output_ms.asnumpy(), output_np)
  107. x2_np_zero = np.zeros_like(x2_np)
  108. output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
  109. assert np.allclose(output_ms.asnumpy(), x2_np_zero)
  110. output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
  111. output_np = np.fmod(x1_np, x2_np)
  112. assert np.allclose(output_ms.asnumpy(), output_np)
  113. output_ms = P.FloorMod()(Tensor(x1_np), Tensor(x2_np))
  114. output_np = np.mod(x1_np, x2_np)
  115. assert np.allclose(output_ms.asnumpy(), output_np)
  116. @pytest.mark.level0
  117. @pytest.mark.platform_x86_gpu_training
  118. @pytest.mark.env_onecard
  119. def test_broadcast():
  120. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  121. np.random.seed(42)
  122. x1_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
  123. x2_np = np.random.rand(1, 4, 1, 6).astype(np.float32)
  124. x1_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32)
  125. x2_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32)
  126. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  127. output_np = np.minimum(x1_np, x2_np)
  128. assert np.allclose(output_ms.asnumpy(), output_np)
  129. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  130. output_np = np.maximum(x1_np, x2_np)
  131. assert np.allclose(output_ms.asnumpy(), output_np)
  132. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  133. output_np = x1_np > x2_np
  134. assert np.allclose(output_ms.asnumpy(), output_np)
  135. output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  136. output_np = x1_np_int32 > x2_np_int32
  137. assert np.allclose(output_ms.asnumpy(), output_np)
  138. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  139. output_np = x1_np < x2_np
  140. assert np.allclose(output_ms.asnumpy(), output_np)
  141. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  142. output_np = x1_np_int32 < x2_np_int32
  143. assert np.allclose(output_ms.asnumpy(), output_np)
  144. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  145. output_np = np.power(x1_np, x2_np)
  146. assert np.allclose(output_ms.asnumpy(), output_np)
  147. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  148. output_np = x1_np / x2_np
  149. assert np.allclose(output_ms.asnumpy(), output_np)
  150. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  151. output_np = x1_np * x2_np
  152. assert np.allclose(output_ms.asnumpy(), output_np)
  153. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  154. output_np = x1_np - x2_np
  155. assert np.allclose(output_ms.asnumpy(), output_np)
  156. output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np))
  157. output_np = x1_np / x2_np
  158. assert np.allclose(output_ms.asnumpy(), output_np)
  159. x2_np_zero = np.zeros_like(x2_np)
  160. output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
  161. assert np.allclose(output_ms.asnumpy(), x2_np_zero)
  162. output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
  163. output_np = np.fmod(x1_np, x2_np)
  164. assert np.allclose(output_ms.asnumpy(), output_np)
  165. output_ms = P.FloorMod()(Tensor(x1_np), Tensor(x2_np))
  166. output_np = np.mod(x1_np, x2_np)
  167. assert np.allclose(output_ms.asnumpy(), output_np)
  168. @pytest.mark.level0
  169. @pytest.mark.platform_x86_gpu_training
  170. @pytest.mark.env_onecard
  171. def test_broadcast_diff_dims():
  172. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  173. np.random.seed(42)
  174. x1_np = np.random.rand(2).astype(np.float32)
  175. x2_np = np.random.rand(2, 1).astype(np.float32)
  176. x1_np_int32 = np.random.randint(0, 100, (2)).astype(np.int32)
  177. x2_np_int32 = np.random.randint(0, 100, (2, 1)).astype(np.int32)
  178. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  179. output_np = np.minimum(x1_np, x2_np)
  180. assert np.allclose(output_ms.asnumpy(), output_np)
  181. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  182. output_np = np.maximum(x1_np, x2_np)
  183. assert np.allclose(output_ms.asnumpy(), output_np)
  184. output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  185. output_np = x1_np_int32 > x2_np_int32
  186. assert np.allclose(output_ms.asnumpy(), output_np)
  187. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  188. output_np = x1_np > x2_np
  189. assert np.allclose(output_ms.asnumpy(), output_np)
  190. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  191. output_np = x1_np < x2_np
  192. assert np.allclose(output_ms.asnumpy(), output_np)
  193. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  194. output_np = x1_np_int32 < x2_np_int32
  195. assert np.allclose(output_ms.asnumpy(), output_np)
  196. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  197. output_np = np.power(x1_np, x2_np)
  198. assert np.allclose(output_ms.asnumpy(), output_np)
  199. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  200. output_np = x1_np / x2_np
  201. assert np.allclose(output_ms.asnumpy(), output_np)
  202. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  203. output_np = x1_np * x2_np
  204. assert np.allclose(output_ms.asnumpy(), output_np)
  205. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  206. output_np = x1_np - x2_np
  207. assert np.allclose(output_ms.asnumpy(), output_np)
  208. output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np))
  209. output_np = x1_np / x2_np
  210. assert np.allclose(output_ms.asnumpy(), output_np)
  211. x2_np_zero = np.zeros_like(x2_np)
  212. output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
  213. assert np.allclose(output_ms.asnumpy(), x2_np_zero)
  214. output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
  215. output_np = np.fmod(x1_np, x2_np)
  216. assert np.allclose(output_ms.asnumpy(), output_np)
  217. output_ms = P.FloorMod()(Tensor(x1_np), Tensor(x2_np))
  218. output_np = np.mod(x1_np, x2_np)
  219. assert np.allclose(output_ms.asnumpy(), output_np)
  220. @pytest.mark.level0
  221. @pytest.mark.platform_x86_gpu_training
  222. @pytest.mark.env_onecard
  223. def test_broadcast_fp16():
  224. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  225. np.random.seed(42)
  226. x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16)
  227. x2_np = np.random.rand(1, 4, 1, 6).astype(np.float16)
  228. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  229. output_np = np.minimum(x1_np, x2_np)
  230. assert np.allclose(output_ms.asnumpy(), output_np)
  231. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  232. output_np = np.maximum(x1_np, x2_np)
  233. assert np.allclose(output_ms.asnumpy(), output_np)
  234. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  235. output_np = x1_np > x2_np
  236. assert np.allclose(output_ms.asnumpy(), output_np)
  237. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  238. output_np = x1_np < x2_np
  239. assert np.allclose(output_ms.asnumpy(), output_np)
  240. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  241. output_np = np.power(x1_np, x2_np)
  242. assert np.allclose(output_ms.asnumpy(), output_np)
  243. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  244. output_np = x1_np / x2_np
  245. assert np.allclose(output_ms.asnumpy(), output_np)
  246. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  247. output_np = x1_np * x2_np
  248. assert np.allclose(output_ms.asnumpy(), output_np)
  249. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  250. output_np = x1_np - x2_np
  251. assert np.allclose(output_ms.asnumpy(), output_np)
  252. output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np))
  253. output_np = x1_np / x2_np
  254. assert np.allclose(output_ms.asnumpy(), output_np)
  255. x2_np_zero = np.zeros_like(x2_np)
  256. output_ms = P.DivNoNan()(Tensor(x1_np), Tensor(x2_np_zero))
  257. assert np.allclose(output_ms.asnumpy(), x2_np_zero)
  258. output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
  259. output_np = np.fmod(x1_np, x2_np)
  260. assert np.allclose(output_ms.asnumpy(), output_np)
  261. output_ms = P.FloorMod()(Tensor(x1_np), Tensor(x2_np))
  262. output_np = np.mod(x1_np, x2_np)
  263. assert np.allclose(output_ms.asnumpy(), output_np)
  264. @pytest.mark.level0
  265. @pytest.mark.platform_x86_gpu_training
  266. @pytest.mark.env_onecard
  267. def test_divnonan_int8():
  268. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  269. np.random.seed(42)
  270. x1_np_int8 = np.random.randint(1, 100, (10, 20)).astype(np.int8)
  271. x2_np_int8 = np.random.randint(1, 100, (10, 20)).astype(np.int8)
  272. output_ms = P.DivNoNan()(Tensor(x1_np_int8), Tensor(x2_np_int8))
  273. output_np = x1_np_int8 // x2_np_int8
  274. print(output_ms.asnumpy(), output_np)
  275. assert np.allclose(output_ms.asnumpy(), output_np)
  276. x2_np_zero = np.zeros_like(x2_np_int8)
  277. output_ms = P.DivNoNan()(Tensor(x1_np_int8), Tensor(x2_np_zero))
  278. assert np.allclose(output_ms.asnumpy(), x2_np_zero)
  279. @pytest.mark.level0
  280. @pytest.mark.platform_x86_gpu_training
  281. @pytest.mark.env_onecard
  282. def test_divnonan_uint8():
  283. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  284. np.random.seed(42)
  285. x1_np_uint8 = np.random.randint(1, 100, (10, 20)).astype(np.uint8)
  286. x2_np_uint8 = np.random.randint(1, 100, (10, 20)).astype(np.uint8)
  287. output_ms = P.DivNoNan()(Tensor(x1_np_uint8), Tensor(x2_np_uint8))
  288. output_np = x1_np_uint8 // x2_np_uint8
  289. print(output_ms.asnumpy(), output_np)
  290. assert np.allclose(output_ms.asnumpy(), output_np)
  291. x2_np_zero = np.zeros_like(x2_np_uint8)
  292. output_ms = P.DivNoNan()(Tensor(x1_np_uint8), Tensor(x2_np_zero))
  293. assert np.allclose(output_ms.asnumpy(), x2_np_zero)