|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
-
- class NetArgmaxWithValue(nn.Cell):
- def __init__(self):
- super(NetArgmaxWithValue, self).__init__()
- axis1 = 0
- axis2 = -1
- self.argmax1 = P.ArgMaxWithValue(axis1)
- self.argmax2 = P.ArgMaxWithValue(axis2)
- self.argmax3 = P.ArgMaxWithValue()
-
- def construct(self, x):
- return (self.argmax1(x), self.argmax2(x), self.argmax3(x))
-
-
- class NetArgmaxWithValueBig(nn.Cell):
- def __init__(self, axis=0):
- super(NetArgmaxWithValueBig, self).__init__()
- self.argmax = P.ArgMaxWithValue(axis)
-
- def construct(self, x):
- return self.argmax(x)
-
-
- def argmaxwithvalue_base(data_type):
- x = Tensor(np.array([[1., 20., 5.],
- [67., 8., 9.],
- [130., 24., 15.],
- [0.3, -0.4, -15.]]).astype(data_type))
- expect1 = np.array([2, 2, 2]).astype(data_type)
- expect2 = np.array([1, 0, 0, 0]).astype(data_type)
- expect11 = np.array([130, 24, 15]).astype(data_type)
- expect22 = np.array([20, 67, 130, 0.3]).astype(data_type)
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- argmax = NetArgmaxWithValue()
- output = argmax(x)
- assert (output[0][0].asnumpy() == expect1).all()
- assert (output[0][1].asnumpy() == expect11).all()
- assert (output[1][0].asnumpy() == expect2).all()
- assert (output[1][1].asnumpy() == expect22).all()
- assert (output[2][0].asnumpy() == expect1).all()
- assert (output[2][1].asnumpy() == expect11).all()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- argmax = NetArgmaxWithValue()
- output = argmax(x)
- assert (output[0][0].asnumpy() == expect1).all()
- assert (output[0][1].asnumpy() == expect11).all()
- assert (output[1][0].asnumpy() == expect2).all()
- assert (output[1][1].asnumpy() == expect22).all()
- assert (output[2][0].asnumpy() == expect1).all()
- assert (output[2][1].asnumpy() == expect11).all()
-
-
- def argmaxwithvalue_3d(data_type, shape_x):
- np.random.seed(2)
- x_np = np.random.random(shape_x).astype(data_type)
- x = Tensor(x_np)
-
- argmax = NetArgmaxWithValueBig(0)
- output = argmax(x)
- expect1 = np.argmax(x_np, axis=0)
- expect2 = np.maximum.reduce(x_np, 0)
- assert (output[0].asnumpy() == expect1).all()
- assert (output[1].asnumpy() == expect2).all()
-
- argmax = NetArgmaxWithValueBig(1)
- output = argmax(x)
- expect1 = np.argmax(x_np, axis=1)
- expect2 = np.maximum.reduce(x_np, 1)
- assert (output[0].asnumpy() == expect1).all()
- assert (output[1].asnumpy() == expect2).all()
-
- argmax = NetArgmaxWithValueBig(2)
- output = argmax(x)
- expect1 = np.argmax(x_np, axis=2)
- expect2 = np.maximum.reduce(x_np, 2)
- assert (output[0].asnumpy() == expect1).all()
- assert (output[1].asnumpy() == expect2).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_argmaxwithvalue_base_float32():
- argmaxwithvalue_base(np.float32)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_argmaxwithvalue_base_float16():
- argmaxwithvalue_base(np.float16)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_argmaxwithvalue_3d_float32():
- shape_x = (2, 32, 256)
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- argmaxwithvalue_3d(np.float32, shape_x)
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- argmaxwithvalue_3d(np.float32, shape_x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_argmaxwithvalue_3d_float16():
- shape_x = (2, 64, 128)
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- argmaxwithvalue_3d(np.float16, shape_x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_argmaxwithvalue_3d_big_float32():
- shape_x = (128, 1024, 1)
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- argmaxwithvalue_3d(np.float32, shape_x)
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- argmaxwithvalue_3d(np.float32, shape_x)
|