|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import random
- from functools import reduce
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- import mindspore.ops as ops
-
-
- class NetArgmax(nn.Cell):
- def __init__(self, axis=0):
- super(NetArgmax, self).__init__()
- self.argmax = ops.Argmax(axis, output_type=mstype.int32)
-
- def construct(self, x):
- return self.argmax(x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_argmax_1d():
- for mode in [context.PYNATIVE_MODE, context.GRAPH_MODE]:
- context.set_context(mode=mode, device_target="GPU")
-
- x = Tensor(np.array([1., 20., 5.]).astype(np.float32))
- Argmax = NetArgmax(axis=0)
- output = Argmax(x)
- expect = np.array([1]).astype(np.float32)
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_argmax_2d():
- for mode in [context.PYNATIVE_MODE, context.GRAPH_MODE]:
- context.set_context(mode=mode, device_target="GPU")
-
- x = Tensor(np.array([[1., 20., 5.],
- [67., 8., 9.],
- [130., 24., 15.],
- [0.3, -0.4, -15.]]).astype(np.float32))
- Argmax_axis_0 = NetArgmax(axis=0)
- output = Argmax_axis_0(x)
- expect = np.array([2, 2, 2]).astype(np.int32)
- assert (output.asnumpy() == expect).all()
-
- Argmax_axis_1 = NetArgmax(axis=1)
- output = Argmax_axis_1(x)
- expect = np.array([1, 0, 0, 0]).astype(np.int32)
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_argmax_high_dims():
- for mode in [context.PYNATIVE_MODE, context.GRAPH_MODE]:
- context.set_context(mode=mode, device_target="GPU")
- for dim in range(3, 10):
- shape = np.random.randint(1, 10, size=dim)
- x = np.random.randn(reduce(lambda x, y: x * y, shape)).astype(np.float32)
- x = x.reshape(shape)
-
- rnd_axis = random.randint(-dim + 1, dim - 1)
- Argmax = NetArgmax(axis=rnd_axis)
- ms_output = Argmax(Tensor(x))
- np_output = np.argmax(x, axis=rnd_axis)
- assert (ms_output.asnumpy() == np_output).all()
|