|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
-
- class OpNetWrapper(nn.Cell):
- def __init__(self, op):
- super(OpNetWrapper, self).__init__()
- self.op = op
-
- def construct(self, *inputs):
- return self.op(*inputs)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_out1_axis0():
- op = P.Split(0, 1)
- op_wrapper = OpNetWrapper(op)
-
- input_x = Tensor(np.arange(24).astype(np.int32).reshape((2, 2, 6)))
- outputs = op_wrapper(input_x)
-
- print(outputs)
- assert outputs[0].shape == (2, 2, 6)
- assert np.allclose(outputs[0].asnumpy()[0, 0, :], [0, 1, 2, 3, 4, 5])
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_out2_axis2():
- op = P.Split(2, 2)
- op_wrapper = OpNetWrapper(op)
-
- input_x = Tensor(np.arange(24).astype(np.int32).reshape((2, 2, 6)))
- outputs = op_wrapper(input_x)
-
- print(outputs)
- assert outputs[0].shape == (2, 2, 3)
- assert outputs[1].shape == (2, 2, 3)
- assert np.allclose(outputs[0].asnumpy()[0, 0, :], [0, 1, 2])
- assert np.allclose(outputs[1].asnumpy()[0, 0, :], [3, 4, 5])
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_out2_axis1neg():
- op = P.Split(-1, 2)
- op_wrapper = OpNetWrapper(op)
-
- input_x = Tensor(np.arange(24).astype(np.float32).reshape((2, 2, 6)))
- outputs = op_wrapper(input_x)
-
- print(outputs)
- assert np.allclose(outputs[0].asnumpy()[0, :, :], [[0., 1., 2.], [6., 7., 8.]])
- assert np.allclose(outputs[1].asnumpy()[0, :, :], [[3., 4., 5.], [9., 10., 11.]])
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_out_float32():
- op = P.Split(5, 2)
- op_wrapper = OpNetWrapper(op)
-
- input_x = Tensor(np.arange(192).astype(np.float32).reshape((2, 2, 2, 2, 2, 6)))
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2.])
- assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3., 4., 5.])
-
- op = P.Split(5, 3)
- op_wrapper = OpNetWrapper(op)
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.])
- assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.])
- assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.])
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_out_float64():
- op = P.Split(5, 2)
- op_wrapper = OpNetWrapper(op)
-
- input_x = Tensor(np.arange(192).astype(np.float64).reshape((2, 2, 2, 2, 2, 6)))
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2.])
- assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3., 4., 5.])
-
- op = P.Split(5, 3)
- op_wrapper = OpNetWrapper(op)
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.])
- assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.])
- assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.])
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_out_float16():
- op = P.Split(-1, 2)
- op_wrapper = OpNetWrapper(op)
-
- input_x = Tensor(np.arange(320).astype(np.float16).reshape((2, 2, 2, 2, 2, 10)))
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2., 3., 4.])
- assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [5., 6., 7., 8., 9.])
-
- op = P.Split(-1, 5)
- op_wrapper = OpNetWrapper(op)
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.])
- assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.])
- assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.])
- assert np.allclose(outputs[3].asnumpy()[0, 0, 0, 0, 0, :], [6., 7.])
- assert np.allclose(outputs[4].asnumpy()[0, 0, 0, 0, 0, :], [8., 9.])
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_out_int32():
- op = P.Split(5, 2)
- op_wrapper = OpNetWrapper(op)
-
- input_x = Tensor(np.arange(192).astype(np.int32).reshape((2, 2, 2, 2, 2, 6)))
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2])
- assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3, 4, 5])
-
- op = P.Split(5, 3)
- op_wrapper = OpNetWrapper(op)
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, 0, :], [96, 97])
- assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, 0, :], [98, 99])
- assert np.allclose(outputs[2].asnumpy()[1, 0, 0, 0, 0, :], [100, 101])
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_out_int64():
- op = P.Split(5, 2)
- op_wrapper = OpNetWrapper(op)
-
- input_x = Tensor(np.arange(192).astype(np.int64).reshape((2, 2, 2, 2, 2, 6)))
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2])
- assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3, 4, 5])
-
- op = P.Split(5, 3)
- op_wrapper = OpNetWrapper(op)
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, 0, :], [96, 97])
- assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, 0, :], [98, 99])
- assert np.allclose(outputs[2].asnumpy()[1, 0, 0, 0, 0, :], [100, 101])
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_out_uint32():
- op = P.Split(-1, 2)
- op_wrapper = OpNetWrapper(op)
-
- input_x = Tensor(np.arange(320).astype(np.uint32).reshape((2, 2, 2, 2, 2, 10)))
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2, 3, 4])
- assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [5, 6, 7, 8, 9])
-
- op = P.Split(-1, 5)
- op_wrapper = OpNetWrapper(op)
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 1, 1, :], [310, 311])
- assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 1, 1, :], [312, 313])
- assert np.allclose(outputs[2].asnumpy()[1, 1, 1, 1, 1, :], [314, 315])
- assert np.allclose(outputs[3].asnumpy()[1, 1, 1, 1, 1, :], [316, 317])
- assert np.allclose(outputs[4].asnumpy()[1, 1, 1, 1, 1, :], [318, 319])
-
- op = P.Split(-2, 2)
- op_wrapper = OpNetWrapper(op)
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, :, 0], [0])
- assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, :, 1], [11])
- assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, :, 2], [162])
- assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, :, 3], [173])
- assert np.allclose(outputs[0].asnumpy()[1, 1, 0, 0, :, 4], [244])
- assert np.allclose(outputs[1].asnumpy()[1, 1, 0, 0, :, 5], [255])
- assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 0, :, 6], [286])
- assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 0, :, 7], [297])
- assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 1, :, 8], [308])
- assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 1, :, 9], [319])
-
- op = P.Split(-1, 1)
- op_wrapper = OpNetWrapper(op)
- input_x = Tensor(np.arange(1).astype(np.uint32))
- outputs = op_wrapper(input_x)
-
- assert np.allclose(outputs[0].asnumpy(), [0])
-
-
- if __name__ == '__main__':
- test_out1_axis0()
- test_out2_axis2()
- test_out2_axis1neg()
|