You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_sign_op.py 1.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
  22. class OpNetWrapper(nn.Cell):
  23. def __init__(self, op):
  24. super(OpNetWrapper, self).__init__()
  25. self.op = op
  26. def construct(self, *inputs):
  27. return self.op(*inputs)
  28. @pytest.mark.level0
  29. @pytest.mark.platform_x86_cpu
  30. @pytest.mark.env_onecard
  31. def test_sign_float32():
  32. op = P.Sign()
  33. op_wrapper = OpNetWrapper(op)
  34. input_x = Tensor(np.array([[2.0, 0.0, -1.0]]).astype(np.float32))
  35. outputs = op_wrapper(input_x)
  36. print(outputs)
  37. assert np.allclose(outputs.asnumpy(), [[1., 0., -1.]])
  38. @pytest.mark.level0
  39. @pytest.mark.platform_x86_cpu
  40. @pytest.mark.env_onecard
  41. def test_sign_int32():
  42. op = P.Sign()
  43. op_wrapper = OpNetWrapper(op)
  44. input_x = Tensor(np.array([[20, 0, -10]]).astype(np.int32))
  45. outputs = op_wrapper(input_x)
  46. print(outputs)
  47. assert np.allclose(outputs.asnumpy(), [[1, 0, -1]])
  48. if __name__ == '__main__':
  49. test_sign_float32()
  50. test_sign_int32()