|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.nn import Dense
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.nn.optim import SGD
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
- class NetSGD(nn.Cell):
- def __init__(self):
- super(NetSGD, self).__init__()
- self.batch_size = 1
- self.reshape = P.Reshape()
- weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01)
- self.fc1 = Dense(16, 10, weight_init=weight)
-
- def construct(self, input_x):
- output = self.reshape(input_x, (self.batch_size, -1))
- output = self.fc1(output)
- return output
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_SGD():
- epoch = 3
- net = NetSGD()
- learning_rate = 0.1
- momentum = 0.9
- dampening = 0.0
- weight_decay = 0.0
- nesterov = True
- loss_scale = 1.0
-
- optimizer = SGD(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum, dampening,
- weight_decay, nesterov, loss_scale)
- criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
- net_with_criterion = WithLossCell(net, criterion)
- train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
- train_network.set_train()
- losses = []
- for _ in range(epoch):
- data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01)
- label = Tensor(np.array([0]).astype(np.int32))
- loss = train_network(data, label)
- losses.append(loss.asnumpy())
-
- last_loss = 100.0
- for loss in losses:
- assert last_loss > loss
- last_loss = loss
|