You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_select_op.py 2.8 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class Net(nn.Cell):
  22. def __init__(self):
  23. super(Net, self).__init__()
  24. self.select = P.Select()
  25. def construct(self, cond_op, input_x, input_y):
  26. return self.select(cond_op, input_x, input_y)
  27. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  28. @pytest.mark.level0
  29. @pytest.mark.platform_x86_cpu
  30. @pytest.mark.env_onecard
  31. def test_select_float32():
  32. cond = np.array([[True, False], [True, False]]).astype(np.bool)
  33. x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)
  34. y = np.array([[1, 2], [3, 4.0]]).astype(np.float32)
  35. select = Net()
  36. output = select(Tensor(cond), Tensor(x), Tensor(y))
  37. print(output.asnumpy())
  38. expect = [[1.2, 2], [1, 4.0]]
  39. error = np.ones(shape=[2, 2]) * 1.0e-6
  40. diff = output.asnumpy() - expect
  41. assert np.all(diff < error)
  42. assert np.all(-diff < error)
  43. @pytest.mark.level0
  44. @pytest.mark.platform_x86_cpu
  45. @pytest.mark.env_onecard
  46. def test_select_float16():
  47. cond = np.array([[True, False], [True, False]]).astype(np.bool)
  48. x = np.array([[1.2, 1], [1, 0]]).astype(np.float16)
  49. y = np.array([[1, 2], [3, 4.0]]).astype(np.float16)
  50. select = Net()
  51. output = select(Tensor(cond), Tensor(x), Tensor(y))
  52. print(output.asnumpy())
  53. expect = [[1.2, 2], [1, 4.0]]
  54. error = np.ones(shape=[2, 2]) * 1.0e-3
  55. diff = output.asnumpy() - expect
  56. assert np.all(diff < error)
  57. assert np.all(-diff < error)
  58. @pytest.mark.level0
  59. @pytest.mark.platform_x86_cpu
  60. @pytest.mark.env_onecard
  61. def test_select_int32():
  62. cond = np.array([[True, False], [True, False]]).astype(np.bool)
  63. x = np.array([[12, 1], [1, 0]]).astype(np.int32)
  64. y = np.array([[1, 2], [3, 4]]).astype(np.int32)
  65. select = Net()
  66. output = select(Tensor(cond), Tensor(x), Tensor(y))
  67. print(output.asnumpy())
  68. expect = [[12, 2], [1, 4]]
  69. error = np.ones(shape=[2, 2]) * 1.0e-6
  70. diff = output.asnumpy() - expect
  71. assert np.all(diff < error)
  72. assert np.all(-diff < error)