|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
-
- class NetRelu(nn.Cell):
- def __init__(self):
- super(NetRelu, self).__init__()
- self.relu = P.ReLU()
- self.x = Parameter(initializer(Tensor(np.array([[[[-1, 1, 10],
- [1, -1, 1],
- [10, 1, -1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='x')
-
- def construct(self):
- return self.relu(self.x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_relu():
- relu = NetRelu()
- output = relu()
- expect = np.array([[[[0, 1, 10,],
- [1, 0, 1,],
- [10, 1, 0.]]]]).astype(np.float32)
- print(output)
- assert (output.asnumpy() == expect).all()
|