|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import pytest
- import numpy as np
- from mindspore import Tensor
- from mindspore.ops import operations as P
- import mindspore.nn as nn
- import mindspore.context as context
- from mindspore.common.api import ms_function
-
- context.set_context(device_target="CPU")
-
-
- class NetReduce(nn.Cell):
- def __init__(self):
- super(NetReduce, self).__init__()
- self.axis0 = 0
- self.axis1 = 1
- self.axis2 = -1
- self.axis3 = (0, 1)
- self.axis4 = (0, 1, 2)
- self.axis5 = (-1,)
- self.axis6 = ()
- self.reduce_mean = P.ReduceMean(False)
- self.reduce_sum = P.ReduceSum(False)
- self.reduce_max = P.ReduceMax(False)
- self.reduce_min = P.ReduceMin(False)
-
- @ms_function
- def construct(self, indice):
- return (self.reduce_mean(indice, self.axis0),
- self.reduce_mean(indice, self.axis1),
- self.reduce_mean(indice, self.axis2),
- self.reduce_mean(indice, self.axis3),
- self.reduce_mean(indice, self.axis4),
- self.reduce_sum(indice, self.axis0),
- self.reduce_sum(indice, self.axis2),
- self.reduce_max(indice, self.axis0),
- self.reduce_max(indice, self.axis2),
- self.reduce_max(indice, self.axis5),
- self.reduce_max(indice, self.axis6),
- self.reduce_min(indice, self.axis0),
- self.reduce_min(indice, self.axis1),
- self.reduce_min(indice, self.axis2),
- self.reduce_min(indice, self.axis3),
- self.reduce_min(indice, self.axis4),
- self.reduce_min(indice, self.axis5),
- self.reduce_min(indice, self.axis6))
-
-
- class NetReduceLogic(nn.Cell):
- def __init__(self):
- super(NetReduceLogic, self).__init__()
- self.axis0 = 0
- self.axis1 = -1
- self.axis2 = (0, 1, 2)
- self.axis3 = ()
- self.reduce_all = P.ReduceAll(False)
- self.reduce_any = P.ReduceAny(False)
-
- @ms_function
- def construct(self, indice):
- return (self.reduce_all(indice, self.axis0),
- self.reduce_all(indice, self.axis1),
- self.reduce_all(indice, self.axis2),
- self.reduce_all(indice, self.axis3),
- self.reduce_any(indice, self.axis0),
- self.reduce_any(indice, self.axis1),
- self.reduce_any(indice, self.axis2),
- self.reduce_any(indice, self.axis3),)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_reduce():
- reduce = NetReduce()
- indice = Tensor(np.array([
- [[0., 2., 1., 4., 0., 2.], [3., 1., 2., 2., 4., 0.]],
- [[2., 0., 1., 5., 0., 1.], [1., 0., 0., 4., 4., 3.]],
- [[4., 1., 4., 0., 0., 0.], [2., 5., 1., 0., 1., 3.]]
- ]).astype(np.float32))
- output = reduce(indice)
- print(output[0])
- print(output[1])
- print(output[2])
- print(output[3])
- print(output[4])
- print(output[5])
- print(output[6])
- print(output[7])
- print(output[8])
- print(output[9])
- print(output[10])
- print(output[11])
- print(output[12])
- print(output[13])
- print(output[14])
- print(output[15])
- print(output[16])
- print(output[17])
- expect_0 = np.array([[2., 1., 2., 3., 0., 1], [2., 2., 1., 2., 3., 2.]]).astype(np.float32)
- expect_1 = np.array([[1.5, 1.5, 1.5, 3., 2., 1.], [1.5, 0., 0.5, 4.5, 2., 2.], [3., 3., 2.5, 0., 0.5, 1.5]]).astype(
- np.float32)
- expect_2 = np.array([[1.5, 2.], [1.5, 2.], [1.5, 2.]]).astype(np.float32)
- expect_3 = np.array([2, 1.5, 1.5, 2.5, 1.5, 1.5]).astype(np.float32)
- expect_4 = np.array([1.75]).astype(np.float32)
- expect_5 = np.array([[6., 3., 6., 9., 0., 3.], [6., 6., 3., 6., 9., 6.]]).astype(np.float32)
- expect_6 = np.array([[9., 12.], [9., 12.], [9., 12.]]).astype(np.float32)
- expect_7 = np.array([[4., 2., 4., 5., 0., 2.], [3., 5., 2., 4., 4., 3.]]).astype(np.float32)
- expect_8 = np.array([[4., 4.], [5., 4.], [4., 5.]]).astype(np.float32)
- expect_9 = np.array([[0., 0., 1., 0., 0., 0.], [1., 0., 0., 0., 1., 0.]]).astype(np.float32)
- expect_10 = np.array([[0., 1., 1., 2., 0., 0.], [1., 0., 0., 4., 0., 1.], [2., 1., 1., 0., 0., 0.]]).astype(
- np.float32)
- expect_11 = np.array([[0., 0.], [0., 0.], [0., 0.]]).astype(np.float32)
- expect_12 = np.array([0., 0., 0., 0., 0., 0.]).astype(np.float32)
- assert (output[0].asnumpy() == expect_0).all()
- assert (output[1].asnumpy() == expect_1).all()
- assert (output[2].asnumpy() == expect_2).all()
- assert (output[3].asnumpy() == expect_3).all()
- assert (output[4].asnumpy() == expect_4).all()
- assert (output[5].asnumpy() == expect_5).all()
- assert (output[6].asnumpy() == expect_6).all()
- assert (output[7].asnumpy() == expect_7).all()
- assert (output[8].asnumpy() == expect_8).all()
- assert (output[9].asnumpy() == expect_8).all()
- assert (output[10].asnumpy() == 5.0).all()
- assert (output[11].asnumpy() == expect_9).all()
- assert (output[12].asnumpy() == expect_10).all()
- assert (output[13].asnumpy() == expect_11).all()
- assert (output[14].asnumpy() == expect_12).all()
- assert (output[15].asnumpy() == 0.0).all()
- assert (output[16].asnumpy() == expect_11).all()
- assert (output[17].asnumpy() == 0.0).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_reduce_logic():
- reduce_logic = NetReduceLogic()
- indice_bool = Tensor([[[False, True, True, True, False, True],
- [True, True, True, True, True, False]],
- [[True, False, True, True, False, True],
- [True, False, False, True, True, True]],
- [[True, True, True, False, False, False],
- [True, True, True, False, True, True]]])
- output = reduce_logic(indice_bool)
- expect_all_1 = np.array([[False, False, True, False, False, False],
- [True, False, False, False, True, False]])
- expect_all_2 = np.array([[False, False], [False, False], [False, False]])
- expect_all_3 = False
- expect_all_4 = False
- expect_any_1 = np.array([[True, True, True, True, False, True], [True, True, True, True, True, True]])
- expect_any_2 = np.array([[True, True], [True, True], [True, True]])
- expect_any_3 = True
- expect_any_4 = True
-
- assert (output[0].asnumpy() == expect_all_1).all()
- assert (output[1].asnumpy() == expect_all_2).all()
- assert (output[2].asnumpy() == expect_all_3).all()
- assert (output[3].asnumpy() == expect_all_4).all()
- assert (output[4].asnumpy() == expect_any_1).all()
- assert (output[5].asnumpy() == expect_any_2).all()
- assert (output[6].asnumpy() == expect_any_3).all()
- assert (output[7].asnumpy() == expect_any_4).all()
-
-
- test_reduce()
- test_reduce_logic()
|