You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_oneslike_op.py 1.9 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class NetOnesLike(nn.Cell):
  22. def __init__(self):
  23. super(NetOnesLike, self).__init__()
  24. self.ones_like = P.OnesLike()
  25. def construct(self, x):
  26. return self.ones_like(x)
  27. @pytest.mark.level0
  28. @pytest.mark.platform_x86_cpu_training
  29. @pytest.mark.env_onecard
  30. def test_OnesLike():
  31. x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
  32. x1_np = np.random.uniform(-2, 2, 1).astype(np.float32)
  33. x0 = Tensor(x0_np)
  34. x1 = Tensor(x1_np)
  35. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  36. ones_like = NetOnesLike()
  37. output0 = ones_like(x0)
  38. expect0 = np.ones_like(x0_np)
  39. diff0 = output0.asnumpy() - expect0
  40. error0 = np.ones(shape=expect0.shape) * 1.0e-5
  41. assert np.all(diff0 < error0)
  42. assert output0.shape == expect0.shape
  43. output1 = ones_like(x1)
  44. expect1 = np.ones_like(x1_np)
  45. diff1 = output1.asnumpy() - expect1
  46. error1 = np.ones(shape=expect1.shape) * 1.0e-5
  47. assert np.all(diff1 < error1)
  48. assert output1.shape == expect1.shape