|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- from mindspore.common.tensor import Tensor
- from mindspore.nn import Cell
- from mindspore.ops import operations as P
-
-
- class ConstScalarAndTensorMinimum(Cell):
- def __init__(self):
- super(ConstScalarAndTensorMinimum, self).__init__()
- self.min = P.Minimum()
- self.x = 20
-
- def construct(self, y):
- return self.min(self.x, y)
-
-
- class TwoTensorsMinimum(Cell):
- def __init__(self):
- super(TwoTensorsMinimum, self).__init__()
- self.min = P.Minimum()
-
- def construct(self, x, y):
- return self.min(x, y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_minimum_constScalar_tensor_int():
- x = Tensor(np.array([[2, 3, 4], [100, 200, 300]]).astype(np.int32))
- expect = [[2, 3, 4], [20, 20, 20]]
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- min_op = ConstScalarAndTensorMinimum()
- output = min_op(x)
- assert np.all(output.asnumpy() == expect)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_minimum_two_tensors_Not_Broadcast_int():
- prop = 100 if np.random.random() > 0.5 else -100
- x = np.random.randn(3, 4, 5).astype(np.int32) * prop
- y = np.random.randn(3, 4, 5).astype(np.int32) * prop
- expect = np.minimum(x, y).astype(np.int32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- min_op = TwoTensorsMinimum()
- output = min_op(Tensor(x), Tensor(y))
- assert np.all(output.asnumpy() == expect)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_minimum_two_tensors_Broadcast_int():
- prop = 100 if np.random.random() > 0.5 else -100
- x = np.random.randn(3, 4, 5).astype(np.int32) * prop
- y = np.random.randn(3, 1, 1).astype(np.int32) * prop
- expect = np.minimum(x, y).astype(np.int32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- min_op = TwoTensorsMinimum()
- output = min_op(Tensor(x), Tensor(y))
- assert np.all(output.asnumpy() == expect)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_minimum_two_tensors_Broadcast_oneDimension_int():
- prop = 100 if np.random.random() > 0.5 else -100
- x = np.random.randn(3).astype(np.int32) * prop
- y = np.random.randn(3).astype(np.int32) * prop
- expect = np.minimum(x, y).astype(np.int32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- min_op = TwoTensorsMinimum()
- output = min_op(Tensor(x), Tensor(y))
- assert np.all(output.asnumpy() == expect)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_minimum_two_tensors_notBroadcast_all_oneDimension_int():
- x = Tensor(np.array([[2]]).astype(np.int32))
- y = Tensor(np.array([[100]]).astype(np.int32))
- expect = [[2]]
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- min_op = TwoTensorsMinimum()
- output = min_op(x, y)
- assert np.all(output.asnumpy() == expect)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_minimum_two_tensors_notBroadcast_float32():
- prop = 100 if np.random.random() > 0.5 else -100
- x = np.random.randn(3, 4, 5).astype(np.float32) * prop
- y = np.random.randn(3, 4, 5).astype(np.float32) * prop
- expect = np.minimum(x, y).astype(np.float32)
- error = np.ones(shape=expect.shape) * 1.0e-5
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- min_op = TwoTensorsMinimum()
- output = min_op(Tensor(x), Tensor(y))
- diff = output.asnumpy() - expect
- assert np.all(np.abs(diff) < error)
- assert output.shape == expect.shape
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_minimum_two_tensors_notBroadcast_float16():
- prop = 100 if np.random.random() > 0.5 else -100
- x = np.random.randn(3, 4, 5).astype(np.float16) * prop
- y = np.random.randn(3, 4, 5).astype(np.float16) * prop
- expect = np.minimum(x, y).astype(np.float16)
- error = np.ones(shape=expect.shape) * 1.0e-5
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- min_op = TwoTensorsMinimum()
- output = min_op(Tensor(x), Tensor(y))
- diff = output.asnumpy() - expect
- assert np.all(np.abs(diff) < error)
- assert output.shape == expect.shape
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_minimum_two_tensors_Broadcast_float16():
- prop = 100 if np.random.random() > 0.5 else -100
- x = np.random.randn(3, 4, 5).astype(np.float16) * prop
- y = np.random.randn(3, 4, 1).astype(np.float16) * prop
- expect = np.minimum(x, y).astype(np.float16)
- error = np.ones(shape=expect.shape) * 1.0e-5
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- min_op = TwoTensorsMinimum()
- output = min_op(Tensor(x), Tensor(y))
- diff = output.asnumpy() - expect
- assert np.all(np.abs(diff) < error)
- assert output.shape == expect.shape
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_minimum_two_tensors_notBroadcast_float64():
- prop = 100 if np.random.random() > 0.5 else -100
- x = np.random.randn(3, 4, 1).astype(np.float64) * prop
- y = np.random.randn(3, 4, 5).astype(np.float64) * prop
- expect = np.minimum(x, y).astype(np.float64)
- error = np.ones(shape=expect.shape) * 1.0e-5
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- min_op = TwoTensorsMinimum()
- output = min_op(Tensor(x), Tensor(y))
- diff = output.asnumpy() - expect
- assert np.all(np.abs(diff) < error)
- assert output.shape == expect.shape
|