You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_exp_op.py 1.8 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class NetExp(nn.Cell):
  22. def __init__(self):
  23. super(NetExp, self).__init__()
  24. self.exp = P.Exp()
  25. def construct(self, x):
  26. return self.exp(x)
  27. @pytest.mark.level0
  28. @pytest.mark.platform_x86_cpu
  29. @pytest.mark.env_onecard
  30. def test_exp():
  31. x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
  32. x1_np = np.random.uniform(-2, 2, 1).astype(np.float32)
  33. x0 = Tensor(x0_np)
  34. x1 = Tensor(x1_np)
  35. expect0 = np.exp(x0_np)
  36. expect1 = np.exp(x1_np)
  37. error0 = np.ones(shape=expect0.shape) * 1.0e-5
  38. error1 = np.ones(shape=expect1.shape) * 1.0e-5
  39. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  40. exp = NetExp()
  41. output0 = exp(x0)
  42. diff0 = output0.asnumpy() - expect0
  43. assert np.all(diff0 < error0)
  44. assert output0.shape == expect0.shape
  45. output1 = exp(x1)
  46. diff1 = output1.asnumpy() - expect1
  47. assert np.all(diff1 < error1)
  48. assert output1.shape == expect1.shape