|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
-
- class NetEqualBool(nn.Cell):
- def __init__(self):
- super(NetEqualBool, self).__init__()
- self.equal = P.Equal()
- x = Tensor(np.array([True, True, False]).astype(np.bool))
- y = Tensor(np.array([True, False, True]).astype(np.bool))
- self.x = Parameter(initializer(x, x.shape), name="x")
- self.y = Parameter(initializer(y, y.shape), name="y")
-
- def construct(self):
- return self.equal(self.x, self.y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_equal_bool():
- Equal = NetEqualBool()
- output = Equal()
- print("================================")
- expect = np.array([True, False, False]).astype(np.bool)
- print(output)
- assert (output.asnumpy() == expect).all()
-
-
- class NetEqualInt(nn.Cell):
- def __init__(self):
- super(NetEqualInt, self).__init__()
- self.equal = P.Equal()
- x = Tensor(np.array([1, 20, 5]).astype(np.int32))
- y = Tensor(np.array([2, 20, 5]).astype(np.int32))
- self.x = Parameter(initializer(x, x.shape), name="x")
- self.y = Parameter(initializer(y, y.shape), name="y")
-
- def construct(self):
- return self.equal(self.x, self.y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_equal_int():
- Equal = NetEqualInt()
- output = Equal()
- print("================================")
- expect = np.array([False, True, True]).astype(np.bool)
- print(output)
- assert (output.asnumpy() == expect).all()
-
-
- class NetEqualFloat(nn.Cell):
- def __init__(self):
- super(NetEqualFloat, self).__init__()
- self.equal = P.Equal()
- x = Tensor(np.array([1.2, 10.4, 5.5]).astype(np.float32))
- y = Tensor(np.array([1.2, 10.3, 5.4]).astype(np.float32))
- self.x = Parameter(initializer(x, x.shape), name="x")
- self.y = Parameter(initializer(y, y.shape), name="y")
-
- def construct(self):
- return self.equal(self.x, self.y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_equal_float():
- Equal = NetEqualFloat()
- output = Equal()
- print("================================")
- expect = np.array([True, False, False]).astype(np.bool)
- print(output)
- assert (output.asnumpy() == expect).all()
|