|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_avgpool_k2s1pv():
- x = np.arange(1 * 1 * 6 * 6).reshape((1, 1, 6, 6)).astype(np.float32)
- net = nn.AvgPool2d(kernel_size=2, stride=1, pad_mode='valid')
- out = net(Tensor(x))
- print(out)
- expect_result = np.array(
- [[[[3.5, 4.5, 5.5, 6.5, 7.5],
- [9.5, 10.5, 11.5, 12.5, 13.5],
- [15.5, 16.5, 17.5, 18.5, 19.5],
- [21.5, 22.5, 23.5, 24.5, 25.5],
- [27.5, 28.5, 29.5, 30.5, 31.5]]]]
- )
- assert np.allclose(out.asnumpy(), expect_result)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_avgpool_k2s2pv():
- x = np.arange(1 * 1 * 6 * 6).reshape((1, 1, 6, 6)).astype(np.float32)
- net = nn.AvgPool2d(kernel_size=2, stride=2, pad_mode='valid')
- out = net(Tensor(x))
- print(out)
- expect_result = np.array(
- [[[[3.5, 5.5, 7.5],
- [15.5, 17.5, 19.5],
- [27.5, 29.5, 31.5]]]]
- )
- assert np.allclose(out.asnumpy(), expect_result)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_avgpool_k3s2pv():
- x = np.arange(1 * 1 * 6 * 6).reshape((1, 1, 6, 6)).astype(np.float32)
- net = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='valid')
- out = net(Tensor(x))
- print(out)
- expect_result = np.array(
- [[[[7., 9.],
- [19., 21.]]]]
- )
- assert np.allclose(out.asnumpy(), expect_result)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_avgpool_k3s2ps():
- x = np.arange(1 * 1 * 6 * 6).reshape((1, 1, 6, 6)).astype(np.float32)
- net = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')
- out = net(Tensor(x))
- print(out)
- expect_result = np.array(
- [[[[7., 9., 10.5],
- [19., 21., 22.5],
- [28., 30., 31.5]]]]
- )
- assert np.allclose(out.asnumpy(), expect_result)
-
-
- if __name__ == '__main__':
- test_avgpool_k2s1pv()
- test_avgpool_k2s2pv()
- test_avgpool_k3s2pv()
- test_avgpool_k3s2ps()
|