|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
-
- class NetArgminWithValue(nn.Cell):
- def __init__(self, axis=0, keep_dims=False):
- super(NetArgminWithValue, self).__init__()
- self.argmin = P.ArgMinWithValue(axis=axis, keep_dims=keep_dims)
-
- def construct(self, x):
- return self.argmin(x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_argminwithvalue_fp32():
- x = np.array([[1., 20., 5.],
- [67., 8., 9.],
- [130., 24., 15.],
- [-0.5, 25, 100]]).astype(np.float32)
- argmin_a0 = NetArgminWithValue(axis=0, keep_dims=False)
-
- output0, output1 = argmin_a0(Tensor(x))
- expect0 = np.array([3, 1, 0]).astype(np.int32)
- expect1 = np.array([-0.5, 8., 5.]).astype(np.float32)
- error = np.ones(shape=expect1.shape) * 1.0e-6
- assert np.all(output0.asnumpy() == expect0)
- assert np.all(np.abs(output1.asnumpy() - expect1) < error)
-
- argmin_a0k = NetArgminWithValue(axis=0, keep_dims=True)
-
- output0, output1 = argmin_a0k(Tensor(x))
- expect0 = np.array([[3, 1, 0]]).astype(np.int32)
- expect1 = np.array([[-0.5, 8., 5.]]).astype(np.float32)
- error = np.ones(shape=expect1.shape) * 1.0e-6
- assert np.all(output0.asnumpy() == expect0)
- assert np.all(np.abs(output1.asnumpy() - expect1) < error)
-
- argmin_a1 = NetArgminWithValue(axis=1, keep_dims=False)
-
- output0, output1 = argmin_a1(Tensor(x))
- expect0 = np.array([0, 1, 2, 0]).astype(np.int32)
- expect1 = np.array([1., 8., 15., -0.5]).astype(np.float32)
- error = np.ones(shape=expect1.shape) * 1.0e-6
- assert np.all(output0.asnumpy() == expect0)
- assert np.all(np.abs(output1.asnumpy() - expect1) < error)
-
- argmin_a1k = NetArgminWithValue(axis=-1, keep_dims=True)
-
- output0, output1 = argmin_a1k(Tensor(x))
- expect0 = np.array([[0], [1], [2], [0]]).astype(np.int32)
- expect1 = np.array([[1.], [8.], [15.], [-0.5]]).astype(np.float32)
- error = np.ones(shape=expect1.shape) * 1.0e-6
- assert np.all(output0.asnumpy() == expect0)
- assert np.all(np.abs(output1.asnumpy() - expect1) < error)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_argminwithvalue_fp16():
- x = np.array([[1., 20., 5.],
- [67., 8., 9.],
- [130., 24., 15.],
- [-0.5, 25, 100]]).astype(np.float16)
- argmin_a0 = NetArgminWithValue(axis=0, keep_dims=False)
-
- output0, output1 = argmin_a0(Tensor(x))
- expect0 = np.array([3, 1, 0]).astype(np.int32)
- expect1 = np.array([-0.5, 8., 5.]).astype(np.float16)
- error = np.ones(shape=expect1.shape) * 1.0e-6
- assert np.all(output0.asnumpy() == expect0)
- assert np.all(np.abs(output1.asnumpy() - expect1) < error)
-
- argmin_a0k = NetArgminWithValue(axis=0, keep_dims=True)
-
- output0, output1 = argmin_a0k(Tensor(x))
- expect0 = np.array([[3, 1, 0]]).astype(np.int32)
- expect1 = np.array([[-0.5, 8., 5.]]).astype(np.float16)
- error = np.ones(shape=expect1.shape) * 1.0e-6
- assert np.all(output0.asnumpy() == expect0)
- assert np.all(np.abs(output1.asnumpy() - expect1) < error)
-
- argmin_a1 = NetArgminWithValue(axis=1, keep_dims=False)
-
- output0, output1 = argmin_a1(Tensor(x))
- expect0 = np.array([0, 1, 2, 0]).astype(np.int32)
- expect1 = np.array([1., 8., 15., -0.5]).astype(np.float16)
- error = np.ones(shape=expect1.shape) * 1.0e-6
- assert np.all(output0.asnumpy() == expect0)
- assert np.all(np.abs(output1.asnumpy() - expect1) < error)
-
- argmin_a1k = NetArgminWithValue(axis=-1, keep_dims=True)
-
- output0, output1 = argmin_a1k(Tensor(x))
- expect0 = np.array([[0], [1], [2], [0]]).astype(np.int32)
- expect1 = np.array([[1.], [8.], [15.], [-0.5]]).astype(np.float16)
- error = np.ones(shape=expect1.shape) * 1.0e-6
- assert np.all(output0.asnumpy() == expect0)
- assert np.all(np.abs(output1.asnumpy() - expect1) < error)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_argminwithvalue_tensor():
- prop = 100 if np.random.random() > 0.5 else -100
- x = np.random.randn(3, 4, 5, 6).astype(np.float16) * prop
- argmin_a0 = NetArgminWithValue(axis=-2, keep_dims=False)
-
- output0, output1 = argmin_a0(Tensor(x))
- expect0 = np.argmin(x, axis=-2)
- expect1 = np.min(x, axis=-2).astype(np.float16)
- error = np.ones(shape=expect1.shape) * 1.0e-6
- assert np.all(output0.asnumpy() == expect0)
- assert np.all(np.abs(output1.asnumpy() - expect1) < error)
|