|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
- class Net2I(nn.Cell):
- def __init__(self):
- super(Net2I, self).__init__()
- self.addn = P.AddN()
-
- def construct(self, x, y):
- return self.addn((x, y))
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_net_2Input():
- x = np.arange(2 * 3 * 2).reshape(2, 3, 2).astype(np.float32)
- y = np.arange(2 * 3 * 2).reshape(2, 3, 2).astype(np.float32)
- addn = Net2I()
- output = addn(Tensor(x, mstype.float32), Tensor(y, mstype.float32))
- print("output:\n", output)
- expect_result = [[[0., 2.],
- [4., 6.],
- [8., 10.]],
- [[12., 14.],
- [16., 18.],
- [20., 22.]]]
-
- assert (output.asnumpy() == expect_result).all()
-
- class Net3I(nn.Cell):
- def __init__(self):
- super(Net3I, self).__init__()
- self.addn = P.AddN()
-
- def construct(self, x, y, z):
- return self.addn((x, y, z))
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_net_3Input():
- x = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
- y = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
- z = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
- addn = Net3I()
- output = addn(Tensor(x, mstype.float32), Tensor(y, mstype.float32), Tensor(z, mstype.float32))
- print("output:\n", output)
- expect_result = [[0., 3., 6.],
- [9., 12., 15]]
-
- assert (output.asnumpy() == expect_result).all()
-
- if __name__ == '__main__':
- test_net_2Input()
- test_net_3Input()
|