You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_edit_distance.py 2.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore.context as context
  17. import mindspore.nn as nn
  18. from mindspore import Tensor
  19. from mindspore.ops import operations as P
  20. context.set_context(mode=context.GRAPH_MODE,
  21. device_target="Ascend")
  22. class EditDistance(nn.Cell):
  23. def __init__(self, hypothesis_shape, truth_shape, normalize=True):
  24. super(EditDistance, self).__init__()
  25. self.edit_distance = P.EditDistance(normalize)
  26. self.hypothesis_shape = hypothesis_shape
  27. self.truth_shape = truth_shape
  28. def construct(self, hypothesis_indices, hypothesis_values, truth_indices, truth_values):
  29. return self.edit_distance(hypothesis_indices, hypothesis_values, self.hypothesis_shape,
  30. truth_indices, truth_values, self.truth_shape)
  31. def test_edit_distance():
  32. h1, h2, h3 = np.array([[0, 0, 0], [1, 0, 1], [1, 1, 1]]), np.array([1, 2, 3]), np.array([2, 2, 2])
  33. t1, t2, t3 = np.array([[0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1]]), np.array([1, 2, 3, 1]), np.array([2, 2, 2])
  34. hypothesis_indices = Tensor(h1.astype(np.int64))
  35. hypothesis_values = Tensor(h2.astype(np.int64))
  36. hypothesis_shape = Tensor(h3.astype(np.int64))
  37. truth_indices = Tensor(t1.astype(np.int64))
  38. truth_values = Tensor(t2.astype(np.int64))
  39. truth_shape = Tensor(t3.astype(np.int64))
  40. edit_distance = EditDistance(hypothesis_shape, truth_shape)
  41. out = edit_distance(hypothesis_indices, hypothesis_values, truth_indices, truth_values)
  42. print(out)