|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- # ResNet101 Example
-
- ## Description
-
- This is an example of training ResNet101 with ImageNet dataset in MindSpore.
-
- ## Requirements
-
- - Install [MindSpore](https://www.mindspore.cn/install/en).
-
- - Download the dataset ImageNet2012.
-
- > Unzip the ImageNet2012 dataset to any path you want, the folder should include train and eval dataset as follows:
-
- ```
- .
- └─dataset
- ├─ilsvrc
- │
- └─validation_preprocess
- ```
-
- ## Example structure
-
- ```shell
- .
- ├── crossentropy.py # CrossEntropy loss function
- ├── config.py # parameter configuration
- ├── dataset.py # data preprocessing
- ├── eval.py # eval net
- ├── lr_generator.py # generate learning rate
- ├── run_distribute_train.sh # launch distributed training(8p)
- ├── run_infer.sh # launch evaluating
- ├── run_standalone_train.sh # launch standalone training(1p)
- └── train.py # train net
- ```
-
- ## Parameter configuration
-
- Parameters for both training and evaluating can be set in config.py.
-
- ```
- "class_num": 1001, # dataset class number
- "batch_size": 32, # batch size of input tensor
- "loss_scale": 1024, # loss scale
- "momentum": 0.9, # momentum optimizer
- "weight_decay": 1e-4, # weight decay
- "epoch_size": 120, # epoch sizes for training
- "pretrain_epoch_size": 0, # epoch size of pretrain checkpoint
- "buffer_size": 1000, # number of queue size in data preprocessing
- "image_height": 224, # image height
- "image_width": 224, # image width
- "save_checkpoint": True, # whether save checkpoint or not
- "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last epoch
- "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
- "save_checkpoint_path": "./", # path to save checkpoint relative to the executed path
- "warmup_epochs": 0, # number of warmup epoch
- "lr_decay_mode": "cosine" # decay mode for generating learning rate
- "label_smooth": 1, # label_smooth
- "label_smooth_factor": 0.1, # label_smooth_factor
- "lr": 0.1 # base learning rate
- ```
-
- ## Running the example
-
- ### Train
-
- #### Usage
-
- ```
- # distributed training
- sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_PATH](optional)
-
- # standalone training
- sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_PATH](optional)
- ```
-
- #### Launch
-
- ```bash
- # distributed training example(8p)
- sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc
-
- If you want to load pretrained ckpt file,
- sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc ./ckpt/pretrained.ckpt
-
- # standalone training example(1p)
- sh run_standalone_train.sh dataset/ilsvrc
-
- If you want to load pretrained ckpt file,
- sh run_standalone_train.sh dataset/ilsvrc ./ckpt/pretrained.ckpt
- ```
-
- > About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
-
- #### Result
-
- Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". You can find checkpoint file together with result like the followings in log.
-
-
- ```
- # distribute training result(8p)
- epoch: 1 step: 5004, loss is 4.805483
- epoch: 2 step: 5004, loss is 3.2121816
- epoch: 3 step: 5004, loss is 3.429647
- epoch: 4 step: 5004, loss is 3.3667371
- epoch: 5 step: 5004, loss is 3.1718972
- ...
- epoch: 67 step: 5004, loss is 2.2768745
- epoch: 68 step: 5004, loss is 1.7223864
- epoch: 69 step: 5004, loss is 2.0665488
- epoch: 70 step: 5004, loss is 1.8717369
- ...
- ```
-
- ### Infer
-
- #### Usage
-
- ```
- # infer
- sh run_infer.sh [VALIDATION_DATASET_PATH] [CHECKPOINT_PATH]
- ```
-
- #### Launch
-
- ```bash
- # infer with checkpoint
- sh run_infer.sh dataset/validation_preprocess/ train_parallel0/resnet-120_5004.ckpt
-
- ```
-
- > checkpoint can be produced in training process.
-
-
- #### Result
-
- Inference result will be stored in the example path, whose folder name is "infer". Under this, you can find result like the followings in log.
-
- ```
- result: {'top_5_accuracy': 0.9429417413572343, 'top_1_accuracy': 0.7853513124199744} ckpt=train_parallel0/resnet-120_5004.ckpt
- ```
|