You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

lr_generator.py 4.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """learning rate generator"""
  16. import math
  17. import numpy as np
  18. def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr):
  19. lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps)
  20. lr = float(init_lr) + lr_inc * current_step
  21. return lr
  22. def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch):
  23. """
  24. generate learning rate array with cosine
  25. Args:
  26. lr(float): base learning rate
  27. steps_per_epoch(int): steps size of one epoch
  28. warmup_epochs(int): number of warmup epochs
  29. max_epoch(int): total epochs of training
  30. Returns:
  31. np.array, learning rate array
  32. """
  33. base_lr = lr
  34. warmup_init_lr = 0
  35. total_steps = int(max_epoch * steps_per_epoch)
  36. warmup_steps = int(warmup_epochs * steps_per_epoch)
  37. decay_steps = total_steps - warmup_steps
  38. lr_each_step = []
  39. for i in range(total_steps):
  40. if i < warmup_steps:
  41. lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr)
  42. else:
  43. linear_decay = (total_steps - i) / decay_steps
  44. cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps))
  45. decayed = linear_decay * cosine_decay + 0.00001
  46. lr = base_lr * decayed
  47. lr_each_step.append(lr)
  48. return np.array(lr_each_step).astype(np.float32)
  49. def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
  50. """
  51. generate learning rate array
  52. Args:
  53. global_step(int): total steps of the training
  54. lr_init(float): init learning rate
  55. lr_end(float): end learning rate
  56. lr_max(float): max learning rate
  57. warmup_epochs(int): number of warmup epochs
  58. total_epochs(int): total epoch of training
  59. steps_per_epoch(int): steps of one epoch
  60. lr_decay_mode(string): learning rate decay mode, including steps, poly or default
  61. Returns:
  62. np.array, learning rate array
  63. """
  64. lr_each_step = []
  65. total_steps = steps_per_epoch * total_epochs
  66. warmup_steps = steps_per_epoch * warmup_epochs
  67. if lr_decay_mode == 'steps':
  68. decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
  69. for i in range(total_steps):
  70. if i < decay_epoch_index[0]:
  71. lr = lr_max
  72. elif i < decay_epoch_index[1]:
  73. lr = lr_max * 0.1
  74. elif i < decay_epoch_index[2]:
  75. lr = lr_max * 0.01
  76. else:
  77. lr = lr_max * 0.001
  78. lr_each_step.append(lr)
  79. elif lr_decay_mode == 'poly':
  80. if warmup_steps != 0:
  81. inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
  82. else:
  83. inc_each_step = 0
  84. for i in range(total_steps):
  85. if i < warmup_steps:
  86. lr = float(lr_init) + inc_each_step * float(i)
  87. else:
  88. base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
  89. lr = float(lr_max) * base * base
  90. if lr < 0.0:
  91. lr = 0.0
  92. lr_each_step.append(lr)
  93. else:
  94. for i in range(total_steps):
  95. if i < warmup_steps:
  96. lr = lr_init + (lr_max - lr_init) * i / warmup_steps
  97. else:
  98. lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
  99. lr_each_step.append(lr)
  100. current_step = global_step
  101. lr_each_step = np.array(lr_each_step).astype(np.float32)
  102. learning_rate = lr_each_step[current_step:]
  103. return learning_rate