You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

main.py 5.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ######################## train and test lenet example ########################
  17. 1. train lenet and get network model files(.ckpt) :
  18. python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data
  19. 2. test lenet according to model file:
  20. python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data
  21. --mode test --ckpt_path checkpoint_lenet_1-1_1875.ckpt
  22. """
  23. import os
  24. import argparse
  25. from config import mnist_cfg as cfg
  26. import mindspore.dataengine as de
  27. import mindspore.nn as nn
  28. from mindspore.model_zoo.lenet import LeNet5
  29. from mindspore import context, Tensor
  30. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  31. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
  32. from mindspore.train import Model
  33. import mindspore.ops.operations as P
  34. import mindspore.transforms.c_transforms as C
  35. from mindspore.transforms import Inter
  36. from mindspore.nn.metrics import Accuracy
  37. from mindspore.ops import functional as F
  38. from mindspore.common import dtype as mstype
  39. class CrossEntropyLoss(nn.Cell):
  40. """
  41. Define loss for network
  42. """
  43. def __init__(self):
  44. super(CrossEntropyLoss, self).__init__()
  45. self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
  46. self.mean = P.ReduceMean()
  47. self.one_hot = P.OneHot()
  48. self.on_value = Tensor(1.0, mstype.float32)
  49. self.off_value = Tensor(0.0, mstype.float32)
  50. def construct(self, logits, label):
  51. label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value)
  52. loss = self.cross_entropy(logits, label)[0]
  53. loss = self.mean(loss, (-1,))
  54. return loss
  55. def create_dataset(data_path, batch_size=32, repeat_size=1,
  56. num_parallel_workers=1):
  57. """
  58. create dataset for train or test
  59. """
  60. # define dataset
  61. ds1 = de.MnistDataset(data_path)
  62. # apply map operations on images
  63. ds1 = ds1.map(input_columns="label", operations=C.TypeCast(mstype.int32))
  64. ds1 = ds1.map(input_columns="image", operations=C.Resize((cfg.image_height, cfg.image_width),
  65. interpolation=Inter.LINEAR),
  66. num_parallel_workers=num_parallel_workers)
  67. ds1 = ds1.map(input_columns="image", operations=C.Rescale(1 / 0.3081, -1 * 0.1307 / 0.3081),
  68. num_parallel_workers=num_parallel_workers)
  69. ds1 = ds1.map(input_columns="image", operations=C.Rescale(1.0 / 255.0, 0.0),
  70. num_parallel_workers=num_parallel_workers)
  71. ds1 = ds1.map(input_columns="image", operations=C.HWC2CHW(), num_parallel_workers=num_parallel_workers)
  72. # apply DatasetOps
  73. ds1 = ds1.shuffle(buffer_size=cfg.buffer_size) # 10000 as in LeNet train script
  74. ds1 = ds1.batch(batch_size, drop_remainder=True)
  75. ds1 = ds1.repeat(repeat_size)
  76. return ds1
  77. if __name__ == "__main__":
  78. parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
  79. parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
  80. help='device where the code will be implemented (default: Ascend)')
  81. parser.add_argument('--mode', type=str, default="train", choices=['train', 'test'],
  82. help='implement phase, set to train or test')
  83. parser.add_argument('--data_path', type=str, default="./MNIST_Data",
  84. help='path where the dataset is saved')
  85. parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\
  86. path where the trained ckpt file')
  87. args = parser.parse_args()
  88. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  89. network = LeNet5(cfg.num_classes)
  90. network.set_train()
  91. # net_loss = nn.SoftmaxCrossEntropyWithLogits() # support this loss soon
  92. net_loss = CrossEntropyLoss()
  93. net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
  94. config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
  95. keep_checkpoint_max=cfg.keep_checkpoint_max)
  96. ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
  97. model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
  98. if args.mode == 'train': # train
  99. ds = create_dataset(os.path.join(args.data_path, args.mode), batch_size=cfg.batch_size,
  100. repeat_size=cfg.epoch_size)
  101. print("============== Starting Training ==============")
  102. model.train(cfg['epoch_size'], ds, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=False)
  103. elif args.mode == 'test': # test
  104. print("============== Starting Testing ==============")
  105. param_dict = load_checkpoint(args.ckpt_path)
  106. load_param_into_net(network, param_dict)
  107. ds_eval = create_dataset(os.path.join(args.data_path, "test"), 32, 1)
  108. acc = model.eval(ds_eval, dataset_sink_mode=False)
  109. print("============== Accuracy:{} ==============".format(acc))
  110. else:
  111. raise RuntimeError('mode should be train or test, rather than {}'.format(args.mode))