You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_parameter.py 9.5 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test parameter """
  16. import numpy as np
  17. import pytest
  18. from mindspore import context, Tensor, Parameter, ParameterTuple, nn
  19. from mindspore._checkparam import Validator
  20. from mindspore.common import dtype as mstype
  21. from mindspore.common.initializer import initializer
  22. def test_parameter_init():
  23. dat = np.array([[1, 2, 3], [2, 3, 4]])
  24. tensor = Tensor(dat)
  25. Parameter(tensor, name="testParameter", requires_grad=True, layerwise_parallel=False)
  26. def test_parameter_tuple_illegal():
  27. p1 = Parameter(initializer(0, [1], mstype.int32), name="global_step1")
  28. p2 = Parameter(initializer(0, [1], mstype.int32), name="global_step2")
  29. plist = [p1, p2]
  30. plist2 = [p1, "str"]
  31. ptuple = (p1, p2)
  32. ptuple_str = ("2", "1")
  33. pstr = "[2,3]"
  34. pnum = 3
  35. ParameterTuple(plist)
  36. ParameterTuple(ptuple)
  37. with pytest.raises(TypeError):
  38. ParameterTuple(p1)
  39. with pytest.raises(TypeError):
  40. ParameterTuple(plist2)
  41. with pytest.raises(TypeError):
  42. ParameterTuple(ptuple_str)
  43. with pytest.raises(TypeError):
  44. ParameterTuple(pstr)
  45. with pytest.raises(TypeError):
  46. ParameterTuple(pnum)
  47. def test_parameter_init_illegal():
  48. dat = np.array([[1, 2, 3], [2, 3, 4]])
  49. tensor = Tensor(dat)
  50. data_none = None
  51. data_bool = True
  52. data_str = "nicai"
  53. data_int = 3
  54. data_list = [1, "2", True]
  55. data_tuple = (1, 2, 3)
  56. # test data
  57. Parameter(tensor, name=data_str)
  58. Parameter(data_int, name=data_str)
  59. Parameter(dat, name=data_str)
  60. with pytest.raises(ValueError):
  61. Parameter(data_bool, name=data_str)
  62. # test name
  63. Parameter(tensor, name=data_none)
  64. with pytest.raises(ValueError):
  65. Parameter(tensor, name=dat)
  66. with pytest.raises(ValueError):
  67. Parameter(tensor, name=tensor)
  68. with pytest.raises(ValueError):
  69. Parameter(tensor, name=data_bool)
  70. with pytest.raises(ValueError):
  71. Parameter(tensor, name=data_int)
  72. with pytest.raises(ValueError):
  73. Parameter(tensor, name=data_list)
  74. with pytest.raises(ValueError):
  75. Parameter(tensor, name=data_tuple)
  76. Parameter(tensor, name=data_str, requires_grad=data_bool)
  77. with pytest.raises(TypeError):
  78. Parameter(tensor, name=data_str, requires_grad=data_none)
  79. with pytest.raises(TypeError):
  80. Parameter(tensor, name=data_str, requires_grad=dat)
  81. with pytest.raises(TypeError):
  82. Parameter(tensor, name=data_str, requires_grad=tensor)
  83. with pytest.raises(TypeError):
  84. Parameter(tensor, name=data_str, requires_grad=data_str)
  85. with pytest.raises(TypeError):
  86. Parameter(tensor, name=data_str, requires_grad=data_int)
  87. with pytest.raises(TypeError):
  88. Parameter(tensor, name=data_str, requires_grad=data_list)
  89. with pytest.raises(TypeError):
  90. Parameter(tensor, name=data_str, requires_grad=data_tuple)
  91. Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_bool)
  92. with pytest.raises(TypeError):
  93. Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=dat)
  94. with pytest.raises(TypeError):
  95. Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=tensor)
  96. with pytest.raises(TypeError):
  97. Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_none)
  98. with pytest.raises(TypeError):
  99. Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_str)
  100. with pytest.raises(TypeError):
  101. Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_int)
  102. with pytest.raises(TypeError):
  103. Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_list)
  104. with pytest.raises(TypeError):
  105. Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_tuple)
  106. def test_check_str_by_regular():
  107. str1 = "12_sf.asdf_"
  108. str2 = "x12_sf.asdf."
  109. str3 = "_x12_sf.asdf"
  110. str4 = ".12_sf.asdf"
  111. str5 = "12_sf.a$sdf."
  112. str6 = "12+sf.asdf"
  113. Validator.check_str_by_regular(str1)
  114. Validator.check_str_by_regular(str2)
  115. Validator.check_str_by_regular(str3)
  116. with pytest.raises(ValueError):
  117. Validator.check_str_by_regular(str4)
  118. with pytest.raises(ValueError):
  119. Validator.check_str_by_regular(str5)
  120. with pytest.raises(ValueError):
  121. Validator.check_str_by_regular(str6)
  122. def test_parameter_compute():
  123. para_1 = Parameter(initializer('ones', [1, 2, 3], mstype.int32), 'test1')
  124. para_2 = Parameter(initializer('ones', [1, 2, 3], mstype.int32), 'test2')
  125. t3 = Tensor(np.ones((1, 2, 3)))
  126. out = para_1 + para_2
  127. assert np.array_equal(out.asnumpy(), np.ones((1, 2, 3)) * 2)
  128. out = para_1 * para_2
  129. assert np.array_equal(out.asnumpy(), np.ones((1, 2, 3)))
  130. out = para_1 + t3
  131. assert np.array_equal(out.asnumpy(), np.ones((1, 2, 3)) * 2)
  132. out = para_1 * t3
  133. assert np.array_equal(out.asnumpy(), np.ones((1, 2, 3)))
  134. assert isinstance(para_1, Tensor)
  135. def test_scalar_parameter_update():
  136. # float
  137. fp = Parameter(0.5, 'fp')
  138. fp.set_data(0.8)
  139. assert np.array_equal(fp.data.asnumpy(), np.array(0.8, np.float32))
  140. fp.set_data(1)
  141. assert np.array_equal(fp.data.asnumpy(), np.array(1.0, np.float32))
  142. int_ = Parameter(1, 'fp')
  143. int_.set_data(2)
  144. assert np.array_equal(int_.data.asnumpy(), np.array(2, np.int32))
  145. with pytest.raises(TypeError):
  146. int_.set_data(1.2)
  147. # Tensor
  148. fp32 = Tensor(0.5, mstype.float32)
  149. int32 = Tensor(2, mstype.int32)
  150. fp16 = Tensor(0.6, mstype.float16)
  151. int16 = Tensor(3, mstype.int16)
  152. bool_ = Tensor(np.array(True, dtype=np.bool_))
  153. # updata_by_tensor
  154. fp32_p = Parameter(fp32, 'fp32')
  155. fp32_p.set_data(0.8)
  156. fp32_p.set_data(1)
  157. fp32_p.set_data(int32)
  158. fp32_p.set_data(fp32)
  159. fp32_p.set_data(int16)
  160. fp32_p.set_data(fp16)
  161. fp32_p.set_data(bool_)
  162. # updata_by_tensor
  163. fp16_p = Parameter(fp16, 'fp16')
  164. with pytest.raises(TypeError):
  165. fp16_p.set_data(fp32)
  166. def test_parameter_lazy_init():
  167. # support lazy init in SEMI_AUTO_PARALLEL mode
  168. context.reset_auto_parallel_context()
  169. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8)
  170. # Call init_data() without set set_data.
  171. para = Parameter(initializer('ones', [1, 2, 3], mstype.float32), 'test1')
  172. assert not isinstance(para.data, Tensor)
  173. para = para.init_data()
  174. assert isinstance(para.data, Tensor)
  175. assert np.array_equal(para.data.asnumpy(), np.ones((1, 2, 3)))
  176. # Call init_data() after set_data is set.
  177. para = Parameter(initializer('ones', [1, 2, 3], mstype.float32), 'test2')
  178. assert not isinstance(para.data, Tensor)
  179. # expect type error when not init
  180. with pytest.raises(TypeError):
  181. para.set_data(Tensor(np.zeros((1, 2, 3))))
  182. # init then assign
  183. para = para.init_data()
  184. # check the type
  185. with pytest.raises(TypeError):
  186. para.set_data(Tensor(np.zeros((1, 2, 3))))
  187. # check the shape
  188. with pytest.raises(ValueError):
  189. para.set_data(Tensor(np.zeros((1, 2))))
  190. # expect change ok
  191. para.set_data(Tensor(np.zeros((1, 2, 3)).astype(np.float32)))
  192. assert np.array_equal(para.data.asnumpy(), np.zeros((1, 2, 3)))
  193. para.set_data(initializer('ones', [1, 2, 3], mstype.float32))
  194. assert isinstance(para.data, Tensor)
  195. # same object and has inited
  196. assert np.array_equal(para.data.asnumpy(), np.ones((1, 2, 3)))
  197. # expect no effect.
  198. para.init_data()
  199. assert np.array_equal(para.data.asnumpy(), np.ones((1, 2, 3)))
  200. para.set_data(Tensor(np.zeros((1, 2)).astype(np.float32)), slice_shape=True)
  201. assert np.array_equal(para.data.asnumpy(), np.zeros((1, 2)))
  202. para.set_data(initializer('ones', [1, 2], mstype.float32), slice_shape=True)
  203. assert np.array_equal(para.data.asnumpy(), np.ones((1, 2)))
  204. context.reset_auto_parallel_context()
  205. def test_parameter_as_output():
  206. context.reset_auto_parallel_context()
  207. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  208. initial_input = initializer('One', shape=(2,), dtype=mstype.int32)
  209. updated_input = Tensor([2, 2], mstype.int32)
  210. class Net(nn.Cell):
  211. def __init__(self, initial, updated):
  212. super().__init__()
  213. self.initial = initial
  214. self.updated = updated
  215. self.p = Parameter(self.initial, name="weight")
  216. self.new_p = self.p.init_data()
  217. self.new_p.set_data(self.updated)
  218. def construct(self):
  219. return self.new_p
  220. net = Net(initial_input, updated_input)
  221. output = net()
  222. assert np.array_equal(output.asnumpy(), np.array([2, 2], np.int32))
  223. context.reset_auto_parallel_context()