You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_unique_op.py 1.8 kB

5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing unique op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset as ds
  20. import mindspore.dataset.transforms.c_transforms as ops
  21. def compare(array, res, idx, cnt):
  22. data = ds.NumpySlicesDataset([array], column_names="x")
  23. data = data.batch(2)
  24. data = data.map(operations=ops.Unique(), input_columns=["x"], output_columns=["x", "y", "z"],
  25. column_order=["x", "y", "z"])
  26. for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
  27. np.testing.assert_array_equal(res, d["x"])
  28. np.testing.assert_array_equal(idx, d["y"])
  29. np.testing.assert_array_equal(cnt, d["z"])
  30. # the test function name code will be start with 'test' later
  31. def duplicate_basics():
  32. compare([0, 1, 2, 1, 2, 3], np.array([0, 1, 2, 3]),
  33. np.array([0, 1, 2, 1, 2, 3]), np.array([1, 2, 2, 1]))
  34. compare([0.0, 1.0, 2.0, 1.0, 2.0, 3.0], np.array([0.0, 1.0, 2.0, 3.0]),
  35. np.array([0, 1, 2, 1, 2, 3]), np.array([1, 2, 2, 1]))
  36. compare([1, 1, 1, 1, 1, 1], np.array([1]),
  37. np.array([0, 0, 0, 0, 0, 0]), np.array([6]))
  38. if __name__ == "__main__":
  39. test_duplicate_basics()