You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 57 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. import mindspore.nn as nn
  19. import mindspore.ops.composite as C
  20. from mindspore import Tensor
  21. from mindspore import ops, Parameter, context
  22. from mindspore.common import dtype as mstype
  23. from mindspore.ops import functional as F
  24. from mindspore.ops import operations as P
  25. from mindspore.ops.operations import _grad_ops as G
  26. from ..ut_filter import non_graph_engine
  27. from ....mindspore_test_framework.mindspore_test import mindspore_test
  28. from ....mindspore_test_framework.pipeline.forward.compile_forward \
  29. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  30. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  31. from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
  32. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  33. class InputBackward(nn.Cell):
  34. def __init__(self, network):
  35. super(InputBackward, self).__init__()
  36. self.network = network
  37. self.network.set_train()
  38. self.grad = C.grad_all_with_sens
  39. def construct(self, x1, x2, x3, sens):
  40. return self.grad(self.network)(x1, x2, x3, sens)
  41. class NetForTupleInput(nn.Cell):
  42. def __init__(self, op):
  43. super(NetForTupleInput, self).__init__()
  44. self.op = op
  45. def construct(self, x1, x2):
  46. return self.op((x1, x2))
  47. class StridedSlicessdNet(nn.Cell):
  48. def __init__(self):
  49. super(StridedSlicessdNet, self).__init__()
  50. self.rank = P.Rank()
  51. def construct(self, x1):
  52. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  53. class NetForConcat(nn.Cell):
  54. def __init__(self):
  55. super(NetForConcat, self).__init__()
  56. self.concat = P.Concat()
  57. def construct(self, x1):
  58. return self.concat((x1, x1))
  59. class NetForConcat1(nn.Cell):
  60. def __init__(self):
  61. super(NetForConcat1, self).__init__()
  62. self.concat = P.Concat()
  63. def construct(self, x1, x2):
  64. return self.concat((x1, x2))
  65. class NetForPackInput(nn.Cell):
  66. def __init__(self, op):
  67. super(NetForPackInput, self).__init__()
  68. self.op = op
  69. self.mul = P.Mul()
  70. def construct(self, *args):
  71. t = ()
  72. for element in args:
  73. t = t + (self.mul(element, element),)
  74. return self.op(t)
  75. class NetForUnpackInput(nn.Cell):
  76. def __init__(self, op):
  77. super(NetForUnpackInput, self).__init__()
  78. self.op = op
  79. self.mul = P.Mul()
  80. def construct(self, x1):
  81. return self.op((self.mul(x1, x1)))
  82. class NetForFlatten(nn.Cell):
  83. def __init__(self):
  84. super(NetForFlatten, self).__init__()
  85. self.flatten = P.Flatten()
  86. def construct(self, x, y):
  87. return self.flatten(x) + y
  88. class NetForFlatten0D(nn.Cell):
  89. def __init__(self):
  90. super(NetForFlatten0D, self).__init__()
  91. self.flatten = P.Flatten()
  92. def construct(self, x):
  93. return self.flatten(x)
  94. class NetForFlattenComposed(nn.Cell):
  95. # make flatten op together with other ops for testing flatten grad
  96. def __init__(self):
  97. super(NetForFlattenComposed, self).__init__()
  98. self.flatten = P.Flatten()
  99. def construct(self, x, y):
  100. return self.flatten(x + x) + y
  101. class ArgmaxNet(nn.Cell):
  102. def __init__(self):
  103. super(ArgmaxNet, self).__init__()
  104. self.argmax = P.Argmax(axis=1)
  105. def construct(self, input_):
  106. return self.argmax(input_)
  107. class ArgminNet(nn.Cell):
  108. def __init__(self):
  109. super(ArgminNet, self).__init__()
  110. self.argmin = P.Argmin(axis=1)
  111. def construct(self, input_):
  112. return self.argmin(input_)
  113. class CumSumNet(nn.Cell):
  114. def __init__(self):
  115. super(CumSumNet, self).__init__()
  116. self.cumsum = P.CumSum()
  117. self.axis = 1
  118. def construct(self, input_):
  119. return self.cumsum(input_, self.axis)
  120. class SummaryNet(nn.Cell):
  121. def __init__(self):
  122. super(SummaryNet, self).__init__()
  123. self.s = P.ScalarSummary()
  124. self.add = P.TensorAdd()
  125. def construct(self, x, y):
  126. self.s("x1", x)
  127. return self.add(x, y)
  128. class HistogramSummaryNet(nn.Cell):
  129. def __init__(self):
  130. super(HistogramSummaryNet, self).__init__()
  131. self.summary = P.HistogramSummary()
  132. self.add = P.TensorAdd()
  133. def construct(self, x, y):
  134. out = self.add(x, y)
  135. string_in = "out"
  136. self.summary(string_in, out)
  137. return out
  138. class ScatterMax(nn.Cell):
  139. """ScatterMax net definition"""
  140. def __init__(self):
  141. super(ScatterMax, self).__init__()
  142. self.scatter_max = P.ScatterMax()
  143. self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref")
  144. def construct(self, indices, updates):
  145. out = self.scatter_max(self.ref, indices, updates)
  146. return out
  147. class ScatterAdd(nn.Cell):
  148. """ScatterAdd net definition"""
  149. def __init__(self, ref_shape):
  150. super(ScatterAdd, self).__init__()
  151. self.scatter_add = P.ScatterAdd()
  152. self.ref = Parameter(Tensor(np.ones(ref_shape, np.float32)), name="ref")
  153. def construct(self, indices, updates):
  154. out = self.scatter_add(self.ref, indices, updates)
  155. return out
  156. class ApplyFtrlNet(nn.Cell):
  157. def __init__(self):
  158. super(ApplyFtrlNet, self).__init__()
  159. self.apply_ftrl = P.ApplyFtrl()
  160. self.lr = 0.001
  161. self.l1 = 0.0
  162. self.l2 = 0.0
  163. self.lr_power = -0.5
  164. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  165. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  166. self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
  167. def construct(self, grad):
  168. out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2, self.lr_power)
  169. return out
  170. class SparseApplyFtrlNet(nn.Cell):
  171. def __init__(self):
  172. super(SparseApplyFtrlNet, self).__init__()
  173. self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5)
  174. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  175. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  176. self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
  177. def construct(self, grad, indices):
  178. out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
  179. return out
  180. class SparseApplyProximalAdagradNet(nn.Cell):
  181. def __init__(self):
  182. super(SparseApplyProximalAdagradNet, self).__init__()
  183. self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad()
  184. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  185. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  186. self.lr = 0.01
  187. self.l1 = 0.0
  188. self.l2 = 0.0
  189. def construct(self, grad, indices):
  190. out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices)
  191. return out
  192. class ApplyProximalAdagradNet(nn.Cell):
  193. def __init__(self):
  194. super(ApplyProximalAdagradNet, self).__init__()
  195. self.apply_proximal_adagrad = P.ApplyProximalAdagrad()
  196. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  197. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  198. self.lr = 0.01
  199. self.l1 = 0.0
  200. self.l2 = 0.0
  201. def construct(self, grad):
  202. out = self.apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad)
  203. return out
  204. class ApplyRMSNet(nn.Cell):
  205. def __init__(self):
  206. super(ApplyRMSNet, self).__init__()
  207. self.apply_rms = P.ApplyRMSProp()
  208. self.lr = 0.001
  209. self.rho = 0.0
  210. self.momentum = 0.0
  211. self.epsilon = 1e-10
  212. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  213. self.ms = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="ms")
  214. self.moment = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="moment")
  215. def construct(self, grad):
  216. out = self.apply_rms(self.var, self.ms, self.moment, self.lr, grad, self.rho, self.momentum, self.epsilon)
  217. return out
  218. test_case_math_ops = [
  219. ('BitwiseAnd', {
  220. 'block': P.BitwiseAnd(),
  221. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  222. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  223. 'skip': ['backward']}),
  224. ('BitwiseAnd_1', {
  225. 'block': P.BitwiseAnd(),
  226. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  227. Tensor(np.array([1, 1, 1]), mstype.int16)],
  228. 'skip': ['backward']}),
  229. ('BitwiseOr', {
  230. 'block': P.BitwiseOr(),
  231. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  232. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  233. 'skip': ['backward']}),
  234. ('BitwiseOr_1', {
  235. 'block': P.BitwiseOr(),
  236. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  237. Tensor(np.array([1, 1, 1]), mstype.int16)],
  238. 'skip': ['backward']}),
  239. ('BitwiseXor', {
  240. 'block': P.BitwiseXor(),
  241. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  242. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  243. 'skip': ['backward']}),
  244. ('BitwiseXor_1', {
  245. 'block': P.BitwiseXor(),
  246. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  247. Tensor(np.array([1, 1, 1]), mstype.int16)],
  248. 'skip': ['backward']}),
  249. ('Neg', {
  250. 'block': P.Neg(),
  251. 'desc_inputs': [[1, 3, 4, 4]],
  252. 'desc_bprop': [[1, 3, 4, 4]]}),
  253. ('Sub', {
  254. 'block': P.Sub(),
  255. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  256. 'desc_bprop': [[2, 3, 3, 5]]}),
  257. ('TensorAdd', {
  258. 'block': P.TensorAdd(),
  259. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  260. 'desc_bprop': [[2, 3, 3, 5]]}),
  261. ('Mul0', {
  262. 'block': P.Mul(),
  263. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  264. 'desc_bprop': [[2, 3, 3, 5]]}),
  265. ('Mul1', {
  266. 'block': P.Mul(),
  267. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  268. 'desc_bprop': [[2, 3, 3, 5]]}),
  269. ('Mul2', {
  270. 'block': P.Mul(),
  271. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  272. 'desc_bprop': [[2, 3, 3, 5]],
  273. 'skip': ['backward']}),
  274. ('Mul3', {
  275. 'block': P.Mul(),
  276. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  277. 'desc_bprop': [[2, 3, 3, 5]],
  278. 'skip': ['backward']}),
  279. ('Mul4', {
  280. 'block': P.Mul(),
  281. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  282. 'desc_bprop': [[2, 3, 3, 5]],
  283. 'skip': ['backward']}),
  284. ('Add0', {
  285. 'block': P.TensorAdd(),
  286. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  287. 'desc_bprop': [[2, 3, 3, 5]]}),
  288. ('Add1', {
  289. 'block': P.TensorAdd(),
  290. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  291. 'desc_bprop': [[2, 3, 3, 5]],
  292. 'skip': ['backward']}),
  293. ('Add2', {
  294. 'block': P.TensorAdd(),
  295. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  296. 'desc_bprop': [[2, 3, 3, 5]],
  297. 'skip': ['backward']}),
  298. ('Add3', {
  299. 'block': P.TensorAdd(),
  300. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  301. 'desc_bprop': [[2, 3, 3, 5]],
  302. 'skip': ['backward']}),
  303. ('Add4', {
  304. 'block': P.TensorAdd(),
  305. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  306. 'desc_bprop': [[2, 3, 3, 5]],
  307. 'skip': ['backward']}),
  308. ('Minimum', {
  309. 'block': P.Minimum(),
  310. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  311. 'desc_bprop': [[2, 3, 3, 5]]}),
  312. ('Pow_0', {
  313. 'block': P.Pow(),
  314. 'desc_const': [2.0],
  315. 'desc_inputs': [[2, 3, 3, 5]],
  316. 'desc_bprop': [[2, 3, 3, 5]]}),
  317. ('Pow_1', {
  318. 'block': P.Pow(),
  319. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  320. 'desc_bprop': [[2, 3, 3, 5]]}),
  321. ('Exp', {
  322. 'block': P.Exp(),
  323. 'desc_inputs': [[2, 3]],
  324. 'desc_bprop': [[2, 3]]}),
  325. ('Expm1', {
  326. 'block': P.Expm1(),
  327. 'desc_inputs': [[2, 3]],
  328. 'desc_bprop': [[2, 3]]}),
  329. ('Erf', {
  330. 'block': P.Erf(),
  331. 'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
  332. 'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
  333. ('Floor', {
  334. 'block': P.Floor(),
  335. 'desc_inputs': [[2, 512, 56, 56]],
  336. 'desc_bprop': [[2, 512, 56, 56]],
  337. 'skip': ['backward']}),
  338. ('Ceil', {
  339. 'block': P.Ceil(),
  340. 'desc_inputs': [[2, 512, 56, 56]],
  341. 'desc_bprop': [[2, 512, 56, 56]],
  342. 'skip': ['backward']}),
  343. ('ACos', {
  344. 'block': P.ACos(),
  345. 'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
  346. 'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
  347. ('ACosGrad', {
  348. 'block': G.ACosGrad(),
  349. 'desc_inputs': [[2, 3], [2, 3]],
  350. 'skip': ['backward']}),
  351. ('Acosh', {
  352. 'block': P.Acosh(),
  353. 'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
  354. 'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
  355. ('AcoshGrad', {
  356. 'block': G.AcoshGrad(),
  357. 'desc_inputs': [[2, 3], [2, 3]],
  358. 'skip': ['backward']}),
  359. ('Sin', {
  360. 'block': P.Sin(),
  361. 'desc_inputs': [[2, 3]],
  362. 'desc_bprop': [[2, 3]]}),
  363. ('Asin', {
  364. 'block': P.Asin(),
  365. 'desc_inputs': [[2, 3]],
  366. 'desc_bprop': [[2, 3]]}),
  367. ('Asinh', {
  368. 'block': P.Asinh(),
  369. 'desc_inputs': [[3, 4, 5]],
  370. 'desc_bprop': [[3, 4, 5]]}),
  371. ('Reciprocal', {
  372. 'block': P.Reciprocal(),
  373. 'desc_inputs': [[2, 3, 3, 5]],
  374. 'desc_bprop': [[2, 3, 3, 5]]}),
  375. ('Minimum_0', {
  376. 'block': P.Minimum(),
  377. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  378. 'desc_bprop': [[2, 3, 3, 5]]}),
  379. ('Maximum', {
  380. 'block': P.Maximum(),
  381. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  382. 'desc_bprop': [[2, 3, 3, 5]]}),
  383. ('Maximum_0', {
  384. 'block': P.Maximum(),
  385. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  386. 'desc_bprop': [[2, 3, 3, 5]]}),
  387. ('MaximumGrad', {
  388. 'block': G.MaximumGrad(),
  389. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  390. 'skip': ['backward']}),
  391. ('MinimumGrad', {
  392. 'block': G.MinimumGrad(),
  393. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  394. 'skip': ['backward']}),
  395. ('StridedSlice', {
  396. 'block': P.StridedSlice(),
  397. 'desc_const': [(0, 1, 2, 1),
  398. (2, 3, 3, 4),
  399. (1, 1, 1, 1)],
  400. 'desc_inputs': [[2, 3, 3, 5]],
  401. 'desc_bprop': [[2, 2, 1, 3]]}),
  402. ('Slice_1', {
  403. 'block': P.Slice(),
  404. 'desc_const': [(0, 1, 2, 1),
  405. (1, 1, 1, 2)],
  406. 'desc_inputs': [[2, 3, 3, 5]],
  407. 'desc_bprop': [[1, 1, 1, 2]]}),
  408. ('StridedSliceGrad', {
  409. 'block': G.StridedSliceGrad(),
  410. 'desc_const': [(64, 1, 1024),
  411. (0, 1, 0),
  412. (64, 2, 1024),
  413. (1, 1, 1)],
  414. 'desc_inputs': [[64, 128, 1024]],
  415. 'skip': ['backward']}),
  416. ('RandomChoiceWithMask', {
  417. 'block': P.RandomChoiceWithMask(256),
  418. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  419. 'desc_bprop': [[256, 4], [256, 4]],
  420. 'skip': ['backward']}),
  421. ('LessEqual', {
  422. 'block': P.LessEqual(),
  423. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  424. Tensor(np.random.rand(4).astype(np.float16))],
  425. 'skip': ['backward']}),
  426. ('Less', {
  427. 'block': P.Less(),
  428. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  429. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  430. 'skip': ['backward']}),
  431. ('RealDiv_0', {
  432. 'block': P.RealDiv(),
  433. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  434. 'desc_inputs': [],
  435. 'skip': ['backward']}),
  436. ('RealDiv', {
  437. 'block': P.RealDiv(),
  438. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  439. 'desc_bprop': [[4]]}),
  440. ('RealDiv_1', {
  441. 'block': P.RealDiv(),
  442. 'desc_inputs': [[512, 1024], [512, 1024]],
  443. 'desc_bprop': [[512, 1024]]}),
  444. ('FloorDiv', {
  445. 'block': P.FloorDiv(),
  446. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  447. Tensor(np.random.rand(4).astype(np.float16))],
  448. 'skip': ['backward']}),
  449. ('FloorMod', {
  450. 'block': P.FloorMod(),
  451. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  452. 'desc_bprop': [[2, 3, 4, 5]]}),
  453. ('identity', {
  454. 'block': ops.functional.identity,
  455. 'desc_inputs': [[2, 2]],
  456. 'skip': ['backward']}),
  457. ('MatMul_1', {
  458. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  459. 'desc_inputs': [[1024, 160], [160, 1024]],
  460. 'desc_bprop': [[1024, 1024]]}),
  461. ('MatMul_2', {
  462. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  463. 'desc_inputs': [[160, 1024], [1024, 160]],
  464. 'desc_bprop': [[1024, 1024]]}),
  465. ('Sub', {
  466. 'block': P.Sub(),
  467. 'desc_inputs': [[3], [3]],
  468. 'desc_bprop': [[3]]}),
  469. ('TruncatedNormal', {
  470. 'block': P.TruncatedNormal(),
  471. 'desc_const': [(1, 2, 3)],
  472. 'desc_inputs': [],
  473. 'skip': ['backward'],
  474. 'add_fake_input': True}),
  475. ('Select', {
  476. 'block': P.Select(),
  477. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  478. [2, 3], [2, 3]],
  479. 'desc_bprop': [[2, 3]]}),
  480. ('Rank', {
  481. 'block': P.Rank(),
  482. 'desc_inputs': [[2, 3]],
  483. 'skip': ['backward']}),
  484. ('InvertPermutation', {
  485. 'block': P.InvertPermutation(),
  486. 'desc_const': [(0, 3, 1, 2)],
  487. 'desc_inputs': [],
  488. 'skip': ['backward']}),
  489. ('Square', {
  490. 'block': P.Square(),
  491. 'desc_inputs': [[4]],
  492. 'desc_bprop': [[4]]}),
  493. ('Rsqrt', {
  494. 'block': P.Rsqrt(),
  495. 'desc_inputs': [[4]],
  496. 'desc_bprop': [[4]]}),
  497. ('Sqrt', {
  498. 'block': P.Sqrt(),
  499. 'desc_inputs': [[4]],
  500. 'desc_bprop': [[4]]}),
  501. ('RealDiv', {
  502. 'block': P.RealDiv(),
  503. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  504. 'desc_bprop': [[2, 3, 4, 5]]}),
  505. ('Div', {
  506. 'block': P.Div(),
  507. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  508. 'desc_bprop': [[2, 3, 4, 5]]}),
  509. ('Equal', {
  510. 'block': P.Equal(),
  511. 'desc_inputs': [[3, 4, 5], [4, 5]],
  512. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  513. ('NotEqual', {
  514. 'block': P.NotEqual(),
  515. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  516. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  517. ('NotEqual_0', {
  518. 'block': P.NotEqual(),
  519. 'desc_inputs': [1, [2, 3, 4, 5]],
  520. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
  521. 'skip': ['backward']}),
  522. ('Greater', {
  523. 'block': P.Greater(),
  524. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  525. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  526. ('GreaterEqual', {
  527. 'block': P.GreaterEqual(),
  528. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  529. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  530. ('LogicalNot', {
  531. 'block': P.LogicalNot(),
  532. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  533. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  534. ('LogicalAnd', {
  535. 'block': P.LogicalAnd(),
  536. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  537. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  538. ('LogicalOr', {
  539. 'block': P.LogicalOr(),
  540. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  541. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  542. ('NpuAllocFloatStatus', {
  543. 'block': P.NPUAllocFloatStatus(),
  544. 'desc_inputs': [],
  545. 'add_fack_input': True,
  546. 'fack_input_type': np.float32,
  547. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  548. 'skip': ['backward']}),
  549. ('NpuGetFloatStatus', {
  550. 'block': P.NPUGetFloatStatus(),
  551. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  552. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  553. 'skip': ['backward']}),
  554. ('NpuClearFloatStatus', {
  555. 'block': P.NPUClearFloatStatus(),
  556. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  557. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  558. 'skip': ['backward']}),
  559. ('CheckValid', {
  560. 'block': P.CheckValid(),
  561. 'desc_inputs': [[20000, 4], [3]],
  562. 'desc_bprop': [[20000]],
  563. 'skip': ['backward']}),
  564. ('NMSWithMask', {
  565. 'block': P.NMSWithMask(0.5),
  566. 'desc_inputs': [[128, 5]],
  567. 'desc_bprop': [[128, 5], [128], [128]],
  568. 'skip': ['backward']}),
  569. ('Abs', {
  570. 'block': P.Abs(),
  571. 'desc_inputs': [[4]],
  572. 'desc_bprop': [[4]]}),
  573. ('CumSum', {
  574. 'block': CumSumNet(),
  575. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))],
  576. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7],
  577. [1, 3, 7, 9]]).astype(np.float32))]}),
  578. ('ReduceSum_3', {
  579. 'block': P.ReduceSum(),
  580. 'desc_const': [0],
  581. 'desc_inputs': [[3, 2]],
  582. 'desc_bprop': [[2]]}),
  583. ('ReduceSum_4', {
  584. 'block': P.ReduceSum(keep_dims=True),
  585. 'desc_const': [0],
  586. 'desc_inputs': [[3, 2]],
  587. 'desc_bprop': [[1, 2]]}),
  588. ('ReduceSum_5', {
  589. 'block': P.ReduceSum(keep_dims=True),
  590. 'desc_inputs': [[2, 3, 4]],
  591. 'desc_bprop': [[1, 1, 1]]}),
  592. ('ReduceSum_6', {
  593. 'block': P.ReduceSum(),
  594. 'desc_inputs': [[2, 3, 4]],
  595. 'desc_bprop': [[1]]}),
  596. ('Sum_0', {
  597. 'block': P.ReduceSum(),
  598. 'desc_const': [(1,)],
  599. 'desc_inputs': [[3, 2]],
  600. 'desc_bprop': [[3]]}),
  601. ('Sum_1', {
  602. 'block': P.ReduceSum(keep_dims=True),
  603. 'desc_const': [(1,)],
  604. 'desc_inputs': [[3, 2]],
  605. 'desc_bprop': [[3, 1]]}),
  606. ('Sum_2', {
  607. 'block': P.ReduceSum(),
  608. 'desc_const': [(0, 1)],
  609. 'desc_inputs': [[3, 2]],
  610. 'desc_bprop': [[1]]}),
  611. ('Sum_3', {
  612. 'block': P.ReduceSum(),
  613. 'desc_const': [0],
  614. 'desc_inputs': [[3, 2]],
  615. 'desc_bprop': [[2]]}),
  616. ('Sum_4', {
  617. 'block': P.ReduceSum(keep_dims=True),
  618. 'desc_const': [0],
  619. 'desc_inputs': [[3, 2]],
  620. 'desc_bprop': [[1, 2]]}),
  621. ('Sum_5', {
  622. 'block': P.ReduceSum(keep_dims=True),
  623. 'desc_const': [()],
  624. 'desc_inputs': [[2, 3, 4]],
  625. 'desc_bprop': [[1, 1, 1]]}),
  626. ('Sum_6', {
  627. 'block': P.ReduceSum(),
  628. 'desc_const': [()],
  629. 'desc_inputs': [[2, 3, 4]],
  630. 'desc_bprop': [[1]]}),
  631. ('Sign', {
  632. 'block': P.Sign(),
  633. 'desc_inputs': [[3]],
  634. 'desc_bprop': [[3]]}),
  635. ('Round', {
  636. 'block': P.Round(),
  637. 'desc_inputs': [[3]],
  638. 'desc_bprop': [[3]]}),
  639. ('Atan2', {
  640. 'block': P.Atan2(),
  641. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  642. Tensor(np.array([1, 1]).astype(np.float32))],
  643. 'desc_bprop': [[2]]}),
  644. ('SquareSumAll', {
  645. 'block': P.SquareSumAll(),
  646. 'desc_inputs': [Tensor(np.array([0, 1, 4, 5]).astype(np.float32)),
  647. Tensor(np.array([1, 1, 3, 7]).astype(np.float32))],
  648. 'skip': ['backward']}),
  649. ('Cos', {
  650. 'block': P.Cos(),
  651. 'desc_inputs': [[2, 3]],
  652. 'desc_bprop': [[2, 3]]}),
  653. ('ReduceAll', {
  654. 'block': P.ReduceAll(),
  655. 'desc_const': [1],
  656. 'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))],
  657. 'desc_bprop': []}),
  658. ('BesselI0e', {
  659. 'block': P.BesselI0e(),
  660. 'desc_inputs': [[2, 3]],
  661. 'desc_bprop': [[2, 3]]}),
  662. ('BesselI1e', {
  663. 'block': P.BesselI1e(),
  664. 'desc_inputs': [[2, 3]],
  665. 'desc_bprop': [[2, 3]]}),
  666. ('Atan', {
  667. 'block': P.Atan(),
  668. 'desc_inputs': [[2, 3]],
  669. 'desc_bprop': [[2, 3]]}),
  670. ('AtanGrad', {
  671. 'block': G.AtanGrad(),
  672. 'desc_inputs': [[2, 3], [2, 3]],
  673. 'skip': ['backward']}),
  674. ('Atanh', {
  675. 'block': P.Atanh(),
  676. 'desc_inputs': [[2, 3]],
  677. 'desc_bprop': [[2, 3]]}),
  678. ('Cosh', {
  679. 'block': P.Cosh(),
  680. 'desc_inputs': [[3, 4, 5]],
  681. 'desc_bprop': [[3, 4, 5]]}),
  682. ('Sinh', {
  683. 'block': P.Sinh(),
  684. 'desc_inputs': [[3, 4, 5]],
  685. 'desc_bprop': [[3, 4, 5]]}),
  686. ('Inv', {
  687. 'block': P.Inv(),
  688. 'desc_inputs': [[21, 9, 12, 5]],
  689. 'desc_bprop': [[21, 9, 12, 5]]}),
  690. ('Invert', {
  691. 'block': P.Invert(),
  692. 'desc_inputs': [Tensor(np.array([[24, 4, 13, 9], [1, 5, 10, 8]]).astype(np.int16))],
  693. 'desc_bprop': [],
  694. 'skip': ['backward']}),
  695. ]
  696. test_case_nn_ops = [
  697. ('BiasAdd', {
  698. 'block': P.BiasAdd(),
  699. 'desc_inputs': [[1, 3, 3, 3], [3]],
  700. 'desc_bprop': [[1, 3, 3, 3]]}),
  701. ('BiasAddGrad', {
  702. 'block': G.BiasAddGrad(),
  703. 'desc_inputs': [[1, 3, 3, 3]],
  704. 'skip': ['backward']}),
  705. ('Gelu', {
  706. 'block': P.Gelu(),
  707. 'desc_inputs': [[1, 3, 4, 4]],
  708. 'desc_bprop': [[1, 3, 4, 4]]}),
  709. ('GeluGrad', {
  710. 'block': G.GeluGrad(),
  711. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  712. 'desc_bprop': [[2, 2]],
  713. 'skip': ['backward']}),
  714. ('Tanh', {
  715. 'block': P.Tanh(),
  716. 'desc_inputs': [[1, 3, 4, 4]],
  717. 'desc_bprop': [[1, 3, 4, 4]]}),
  718. ('TanhGrad', {
  719. 'block': G.TanhGrad(),
  720. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  721. 'desc_bprop': [[1, 3, 4, 4]],
  722. 'skip': ['backward']}),
  723. ('ReLU', {
  724. 'block': P.ReLU(),
  725. 'desc_inputs': [[1, 3, 4, 4]],
  726. 'desc_bprop': [[1, 3, 4, 4]]}),
  727. ('ReLU6', {
  728. 'block': P.ReLU6(),
  729. 'desc_inputs': [[1, 3, 4, 4]],
  730. 'desc_bprop': [[1, 3, 4, 4]]}),
  731. ('ReLUV2', {
  732. 'block': P.ReLUV2(),
  733. 'desc_inputs': [[1, 3, 4, 4]],
  734. 'desc_bprop': [[1, 3, 4, 4], ([1, 1, 4, 4, 2], {'dtype': np.uint8})]}),
  735. ('ReLUGrad', {
  736. 'block': G.ReluGrad(),
  737. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  738. 'skip': ['backward']}),
  739. ('Softplus', {
  740. 'block': P.Softplus(),
  741. 'desc_inputs': [[1, 3, 4, 4]],
  742. 'desc_bprop': [[1, 3, 4, 4]]}),
  743. ('SoftplusGrad', {
  744. 'block': G.SoftplusGrad(),
  745. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  746. 'skip': ['backward']}),
  747. ('Elu', {
  748. 'block': P.Elu(),
  749. 'desc_inputs': [[2, 3, 4]],
  750. 'desc_bprop': [[2, 3, 4]]}),
  751. ('EluGrad', {
  752. 'block': G.EluGrad(),
  753. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  754. 'desc_bprop': [[2, 3, 4]],
  755. 'skip': ['backward']}),
  756. ('Sigmoid', {
  757. 'block': P.Sigmoid(),
  758. 'desc_inputs': [[1, 3, 4, 4]],
  759. 'desc_bprop': [[1, 3, 4, 4]]}),
  760. ('MaxPool', {
  761. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  762. 'desc_inputs': [[100, 3, 28, 28]],
  763. 'desc_bprop': [[100, 3, 14, 14]]}),
  764. ('MaxPoolGrad', {
  765. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  766. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  767. 'desc_bprop': [[3, 4, 6, 6]],
  768. 'skip': ['backward']}),
  769. ('AvgPool', {
  770. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  771. 'desc_inputs': [[100, 3, 28, 28]],
  772. 'desc_bprop': [[100, 3, 14, 14]]}),
  773. ('AvgPoolGrad', {
  774. 'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  775. 'desc_const': [(3, 4, 6, 6)],
  776. 'const_first': True,
  777. 'desc_inputs': [[3, 4, 6, 6]],
  778. 'desc_bprop': [[3, 4, 6, 6]],
  779. 'skip': ['backward']}),
  780. ('MaxPoolWithArgmax', {
  781. 'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
  782. 'desc_inputs': [[128, 32, 32, 64]],
  783. 'desc_bprop': [[128, 32, 16, 32], ([128, 32, 4, 33], {'dtype': np.uint16})]}),
  784. ('SoftmaxCrossEntropyWithLogits', {
  785. 'block': P.SoftmaxCrossEntropyWithLogits(),
  786. 'desc_inputs': [[1, 10], [1, 10]],
  787. 'desc_bprop': [[1], [1, 10]],
  788. 'skip': ['backward_exec']}),
  789. ('Flatten', {
  790. 'block': P.Flatten(),
  791. 'desc_inputs': [[128, 32, 32, 64]],
  792. 'desc_bprop': [[128, 65536]]}),
  793. ('LogSoftmax', {
  794. 'block': P.LogSoftmax(),
  795. 'desc_inputs': [[64, 2]],
  796. 'desc_bprop': [[64, 2]]}),
  797. ('LogSoftmaxGrad', {
  798. 'block': G.LogSoftmaxGrad(),
  799. 'desc_inputs': [[16, 1234], [16, 1234]],
  800. 'desc_bprop': [[64, 2]],
  801. 'skip': ['backward']}),
  802. ('L2Normalize', {
  803. 'block': P.L2Normalize(),
  804. 'desc_inputs': [[2, 2]],
  805. 'desc_bprop': [[2, 2]]}),
  806. ('L2NormalizeGrad', {
  807. 'block': G.L2NormalizeGrad(),
  808. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  809. 'desc_bprop': [[2, 2]],
  810. 'skip': ['backward']}),
  811. ('LayerNorm', {
  812. 'block': P.LayerNorm(),
  813. 'desc_inputs': [[2, 16], [16], [16]],
  814. 'desc_bprop': [[2, 16], [2, 1], [2, 1]]}),
  815. ('LayerNormGrad', {
  816. 'block': G.LayerNormGrad(),
  817. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  818. 'desc_bprop': [[2, 16], [16], [16]],
  819. 'skip': ['backward']}),
  820. ('FusedBatchNorm', {
  821. 'block': P.FusedBatchNorm(),
  822. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  823. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  824. 'skip': []}),
  825. ('FusedBatchNormGrad', {
  826. 'block': G.FusedBatchNormGrad(),
  827. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  828. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  829. 'skip': ['backward']}),
  830. ('BatchNorm', {
  831. 'block': P.BatchNorm(),
  832. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  833. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  834. 'skip': []}),
  835. ('BatchNormGrad', {
  836. 'block': G.BatchNormGrad(),
  837. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]],
  838. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  839. 'skip': ['backward']}),
  840. ('BasicLSTMCell', {
  841. 'block': P.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'),
  842. 'desc_inputs': [[128, 128], [128, 128], [128, 128], [512, 256, 1, 1], [512, 1, 1, 1]],
  843. 'desc_bprop': [[128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128]],
  844. 'skip': []}),
  845. ('TopK', {
  846. 'block': P.TopK(),
  847. 'desc_const': [5],
  848. 'desc_inputs': [[20, 20, 10]],
  849. 'desc_bprop': [[20, 20, 5]],
  850. 'skip': ['backward']}),
  851. ('GatherV2_0', {
  852. 'block': P.GatherV2(),
  853. 'desc_const': [0],
  854. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  855. 'desc_bprop': [[2, 1, 2]]}),
  856. ('GatherV2_1', {
  857. 'block': P.GatherV2(),
  858. 'desc_const': [2],
  859. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  860. 'desc_bprop': [[3, 1, 2]]}),
  861. ('GatherV2_2', {
  862. 'block': P.GatherV2(),
  863. 'desc_const': [0],
  864. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  865. 'desc_bprop': [[3, 2, 1, 3]]}),
  866. ('GatherV2_3', {
  867. 'block': P.GatherV2(),
  868. 'desc_const': [2],
  869. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  870. 'desc_bprop': [[3, 1, 3, 2]]}),
  871. ('GatherV2_4', {
  872. 'block': P.GatherV2(),
  873. 'desc_const': [1],
  874. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  875. 'desc_bprop': [[32, 1, 1024]]}),
  876. ('GatherV2_5', {
  877. 'block': P.GatherV2(),
  878. 'desc_const': [-1],
  879. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  880. 'desc_bprop': [[3, 1, 2]]}),
  881. ('GatherV2_6', {
  882. 'block': P.GatherV2(),
  883. 'desc_const': [0],
  884. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  885. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  886. ('Range', {
  887. 'block': P.Range(1.0, 5.0),
  888. 'desc_inputs': [Tensor(np.ones([10]).astype(np.float32))],
  889. 'desc_bprop': [[10]]}),
  890. ('UnsortedSegmentSum', {
  891. 'block': P.UnsortedSegmentSum(),
  892. 'desc_const': [1280],
  893. 'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))],
  894. 'desc_bprop': [[8192, 1024]],
  895. 'skip': ['backward']}),
  896. ('UnsortedSegmentSum_1', {
  897. 'block': P.UnsortedSegmentSum(),
  898. 'desc_const': [4],
  899. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  900. 'desc_bprop': [[4, 1, 3]],
  901. 'skip': ['backward']}),
  902. ('UnsortedSegmentMin', {
  903. 'block': P.UnsortedSegmentMin(),
  904. 'desc_const': [4],
  905. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([1, 2, 3]).astype(np.int32))],
  906. 'desc_bprop': [[4, 2, 1, 3]]}),
  907. ('DropoutGenMask', {
  908. 'block': P.DropoutGenMask(),
  909. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  910. 'desc_inputs': [],
  911. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  912. 'skip': ['backward']}),
  913. ('DropoutDoMask', {
  914. 'block': P.DropoutDoMask(),
  915. 'desc_const': [Tensor(0.5)],
  916. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  917. 'desc_bprop': [[64, 12, 128, 128]]}),
  918. ('Dropout', {
  919. 'block': nn.Dropout(0.5),
  920. 'desc_inputs': [[64, 12, 128, 128]],
  921. 'desc_bprop': [[64, 12, 128, 128]]}),
  922. ('ReduceMean0', {
  923. 'block': P.ReduceMean(),
  924. 'desc_const': [(2,)],
  925. 'desc_inputs': [[3, 2, 2]],
  926. 'desc_bprop': [[3, 2]]}),
  927. ('ReduceMean1', {
  928. 'block': P.ReduceMean(),
  929. 'desc_const': [2],
  930. 'desc_inputs': [[3, 2, 2]],
  931. 'desc_bprop': [[3, 2]]}),
  932. ('All', {
  933. 'block': P.ReduceAll(),
  934. 'desc_const': [(1,)],
  935. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  936. 'desc_bprop': [[3]],
  937. 'skip': ['backward']}),
  938. ('DescConst', {
  939. 'block': Tensor(np.array([2], np.float32)),
  940. 'desc_inputs': [],
  941. 'desc_bprop': [[1]],
  942. 'skip': ['backward'],
  943. 'add_fake_input': True}),
  944. ('Fill', {
  945. 'block': P.Fill(),
  946. 'desc_const': [mstype.float32, (2, 3), 1.0],
  947. 'desc_inputs': [],
  948. 'desc_bprop': [[2, 3]],
  949. 'skip': ['backward'],
  950. 'add_fake_input': True}),
  951. ('OnesLike', {
  952. 'block': P.OnesLike(),
  953. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  954. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  955. }),
  956. ('ZerosLike', {
  957. 'block': P.ZerosLike(),
  958. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  959. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  960. }),
  961. ('Softmax', {
  962. 'block': P.Softmax(),
  963. 'desc_inputs': [[5, 5]],
  964. 'desc_bprop': [[5, 5]]}),
  965. ('DepthwiseConv2dNative_1', {
  966. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  967. 'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
  968. 'desc_bprop': [[10, 32, 16, 16]]}),
  969. ('DepthwiseConv2dNative_2', {
  970. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  971. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  972. 'desc_bprop': [[2592, 2048, 4, 4]]}),
  973. ('SigmoidCrossEntropyWithLogits', {
  974. 'block': P.SigmoidCrossEntropyWithLogits(),
  975. 'desc_inputs': [[128, 10], [128, 10]],
  976. 'desc_bprop': [[128, 10]]}),
  977. ('Pad', {
  978. 'block': P.Pad(((1, 2), (2, 3))),
  979. 'desc_inputs': [[7, 7]],
  980. 'desc_bprop': [[10, 12]]}),
  981. ('BinaryCrossEntropy', {
  982. 'block': P.BinaryCrossEntropy(),
  983. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  984. 'desc_bprop': []}),
  985. ('SparseApplyAdagrad', {
  986. 'block': P.SparseApplyAdagrad(0.5),
  987. 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
  988. 'desc_bprop': [[3, 3], [3, 3]],
  989. 'skip': ['backward']}),
  990. ('SparseApplyFtrl', {
  991. 'block': SparseApplyFtrlNet(),
  992. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  993. 'skip': ['backward']}),
  994. ('ApplyProximalAdagrad', {
  995. 'block': ApplyProximalAdagradNet(),
  996. 'desc_inputs': [[3, 3]],
  997. 'skip': ['backward']}),
  998. ('SparseApplyProximalAdagrad', {
  999. 'block': SparseApplyProximalAdagradNet(),
  1000. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1001. 'skip': ['backward']}),
  1002. ('Flatten_1', {
  1003. 'block': NetForFlatten(),
  1004. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  1005. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  1006. 'skip': ['backward']}),
  1007. ('Flatten_2', {
  1008. 'block': NetForFlatten(),
  1009. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  1010. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  1011. 'skip': ['backward']}),
  1012. ('Flatten_3', {
  1013. 'block': NetForFlattenComposed(),
  1014. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  1015. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  1016. 'skip': []}),
  1017. ('ArgmaxNet', {
  1018. 'block': ArgmaxNet(),
  1019. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1020. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1021. 'skip': ['backward']}),
  1022. ('ArgminNet', {
  1023. 'block': ArgminNet(),
  1024. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1025. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1026. 'skip': ['backward']}),
  1027. ('OneHot', {
  1028. 'block': P.OneHot(),
  1029. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  1030. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  1031. 'desc_bprop': [[1, 3]]}),
  1032. ('ReduceProd_0', {
  1033. 'block': P.ReduceProd(),
  1034. 'desc_const': [0],
  1035. 'desc_inputs': [[3, 2]],
  1036. 'desc_bprop': [[2]]}),
  1037. ('ReduceProd_1', {
  1038. 'block': P.ReduceProd(keep_dims=True),
  1039. 'desc_const': [0],
  1040. 'desc_inputs': [[3, 2]],
  1041. 'desc_bprop': [[1, 2]]}),
  1042. ('CumProd', {
  1043. 'block': P.CumProd(),
  1044. 'desc_const': [0],
  1045. 'desc_inputs': [[3, 2]],
  1046. 'desc_bprop': [[3, 2]]}),
  1047. ('ApplyFtrl', {
  1048. 'block': ApplyFtrlNet(),
  1049. 'desc_inputs': [[3, 3]],
  1050. 'desc_bprop': [3, 3],
  1051. 'skip': ['backward']}),
  1052. ('ApplyRMSProp', {
  1053. 'block': ApplyRMSNet(),
  1054. 'desc_inputs': [[3, 3]],
  1055. 'desc_bprop': [3, 3],
  1056. 'skip': ['backward']}),
  1057. ('ApplyCenteredRMSProp', {
  1058. 'block': P.ApplyCenteredRMSProp(),
  1059. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  1060. 'desc_inputs': [Tensor(1., mstype.float32), Tensor(2., mstype.float32), Tensor(1., mstype.float32),
  1061. Tensor(2., mstype.float32), Tensor(1., mstype.float32)],
  1062. 'desc_bprop': [1],
  1063. 'skip': ['backward']}),
  1064. ('CTCLoss', {
  1065. 'block': P.CTCLoss(),
  1066. 'desc_inputs': [Tensor(np.ones([6, 4, 6]).astype(np.float32)),
  1067. Tensor(np.array([[0, 1], [1, 0], [2, 3], [3, 2]]).astype(np.int64)),
  1068. Tensor(np.array([1, 2, 3, 4]).astype(np.int32)),
  1069. Tensor(np.array([6, 6, 6, 6]).astype(np.int32))],
  1070. 'desc_bprop': [[4], [6, 4, 6]]}),
  1071. ('L2Loss_1', {
  1072. 'block': P.L2Loss(),
  1073. 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)],
  1074. 'desc_bprop': []}),
  1075. ('L2Loss_2', {
  1076. 'block': P.L2Loss(),
  1077. 'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
  1078. 'desc_bprop': []}),
  1079. ('ResizeBilinear', {
  1080. 'block': P.ResizeBilinear((5, 5)),
  1081. 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)],
  1082. 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)]}),
  1083. ('ResizeBilinearGrad', {
  1084. 'block': G.ResizeBilinearGrad(),
  1085. 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32), Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
  1086. 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
  1087. 'skip': ['backward']}),
  1088. ('ROIAlign', {
  1089. 'block': P.ROIAlign(7, 7, 0.03125, 2),
  1090. 'desc_inputs': [[2, 256, 192, 320], [1024, 5]],
  1091. 'desc_bprop': [[7, 7]]}),
  1092. ('ROIAlignGrad', {
  1093. 'block': G.ROIAlignGrad((1, 1, 1, 1), 2, 2, 0.5, 2),
  1094. 'desc_inputs': [[1, 1, 2, 2], [1, 5]],
  1095. 'desc_bprop': [[1, 1, 2, 2]],
  1096. 'skip': ['backward']}),
  1097. ('LARSUpdate', {
  1098. 'block': P.LARSUpdate(1e-05, 0.001, False),
  1099. 'desc_const': [0.0, 0.001],
  1100. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  1101. 'desc_bprop': [3, 3],
  1102. 'skip': ['backward']}),
  1103. ('SGD', {
  1104. 'block': P.SGD(0.0, 0.0, False),
  1105. 'desc_inputs': [[3, 3], [3, 3], Tensor(0.001, mstype.float32), [3, 3], Tensor(0.1, mstype.float32), [3, 3]],
  1106. 'desc_bprop': [3, 3],
  1107. 'skip': ['backward']}),
  1108. ('BinaryCrossEntropy', {
  1109. 'block': P.BinaryCrossEntropy(),
  1110. 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
  1111. Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16),
  1112. Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
  1113. 'desc_bprop': []}),
  1114. ('BinaryCrossEntropyGrad', {
  1115. 'block': G.BinaryCrossEntropyGrad(),
  1116. 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
  1117. Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16), Tensor(0.85, mstype.float16),
  1118. Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
  1119. 'desc_bprop': [],
  1120. 'skip': ['backward']}),
  1121. ('SparseApplyAdagrad', {
  1122. 'block': P.SparseApplyAdagrad(0.5),
  1123. 'desc_inputs': [Tensor([[0.7, 0.2], [0.1, 0.07]], mstype.float32),
  1124. Tensor([[0.2, 0.2], [0.1, 0.4]], mstype.float32),
  1125. Tensor([[0.5, 0.4], [0.6, 0.1]], mstype.float32), Tensor([1, 1], mstype.int32)],
  1126. 'desc_bprop': [Tensor([[0.7, 0.2], [0.1, 0.07]], mstype.float32)],
  1127. 'skip': ['backward']}),
  1128. ]
  1129. test_case_array_ops = [
  1130. ('SpaceToDepth', {
  1131. 'block': P.SpaceToDepth(2),
  1132. 'desc_inputs': [[1, 3, 2, 2]],
  1133. 'desc_bprop': [[1, 12, 1, 1]]}),
  1134. ('DepthToSpace', {
  1135. 'block': P.DepthToSpace(2),
  1136. 'desc_inputs': [[1, 12, 1, 1]],
  1137. 'desc_bprop': [[1, 3, 2, 2]]}),
  1138. ('Split', {
  1139. 'block': P.Split(1, 2),
  1140. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  1141. 'skip': ['backward']}),
  1142. ('Argmax', {
  1143. 'block': P.Argmax(),
  1144. 'desc_inputs': [[128, 32, 32, 64]],
  1145. 'desc_bprop': [0],
  1146. 'skip': ['backward']}),
  1147. ('Argmin', {
  1148. 'block': P.Argmin(),
  1149. 'desc_inputs': [[128, 32, 32, 64]],
  1150. 'desc_bprop': [1],
  1151. 'skip': ['backward']}),
  1152. ('ArgMaxWithValue', {
  1153. 'block': P.ArgMaxWithValue(),
  1154. 'desc_inputs': [[128, 32, 32, 64]],
  1155. 'desc_bprop': [[1], [1]],
  1156. 'skip': ['backward']}),
  1157. ('ArgMinWithValue', {
  1158. 'block': P.ArgMinWithValue(),
  1159. 'desc_inputs': [[128, 32, 32, 64]],
  1160. 'desc_bprop': [[1], [1]],
  1161. 'skip': ['backward']}),
  1162. ('Transpose_dim3', {
  1163. 'block': P.Transpose(),
  1164. 'desc_const': [(0, 2, 1)],
  1165. 'desc_inputs': [[1, 2, 3]],
  1166. 'desc_bprop': [[1, 3, 2]]}),
  1167. ('Transpose_dim4', {
  1168. 'block': P.Transpose(),
  1169. 'desc_const': [(0, 1, 2, 3)],
  1170. 'desc_inputs': [[1, 2, 3, 4]],
  1171. 'desc_bprop': [[1, 2, 4, 3]]}),
  1172. ('AddN', {
  1173. 'block': NetForTupleInput(P.AddN()),
  1174. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  1175. 'desc_bprop': [[2, 3, 3, 5]],
  1176. 'skip': ['backward']}),
  1177. ('Shape', {
  1178. 'block': P.Shape(),
  1179. 'desc_inputs': [[3, 3, 2, 2]],
  1180. 'skip': ['backward']}),
  1181. ('Reshape', {
  1182. 'block': P.Reshape(),
  1183. 'desc_const': [(64,)],
  1184. 'desc_inputs': [[64, 1]],
  1185. 'desc_bprop': [[64]]}),
  1186. ('Cast', {
  1187. 'block': P.Cast(),
  1188. 'desc_const': [mstype.int32],
  1189. 'desc_inputs': [[2, 3, 4, 5]],
  1190. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5)).astype(np.int32))]}),
  1191. ('ExpandDims', {
  1192. 'block': P.ExpandDims(),
  1193. 'desc_const': [0],
  1194. 'desc_inputs': [[2, 2]],
  1195. 'desc_bprop': [[1, 2, 2]]}),
  1196. ('ExpandDims_1', {
  1197. 'block': P.ExpandDims(),
  1198. 'desc_const': [-1],
  1199. 'desc_inputs': [[2, 2]],
  1200. 'desc_bprop': [[2, 2, 1]]}),
  1201. ('Squeeze', {
  1202. 'block': P.Squeeze(2),
  1203. 'desc_inputs': [[3, 2, 1]],
  1204. 'desc_bprop': [[3, 2]]}),
  1205. ('Squeeze_0', {
  1206. 'block': P.Squeeze(),
  1207. 'desc_inputs': [[3, 1, 2, 1]],
  1208. 'desc_bprop': [[3, 2]]}),
  1209. ('Squeeze_1', {
  1210. 'block': P.Squeeze(),
  1211. 'desc_inputs': [[1, 1, 1, 1]],
  1212. 'desc_bprop': [1.0],
  1213. 'skip': ['backward']}),
  1214. ('Squeeze_2', {
  1215. 'block': P.Squeeze((2, 3)),
  1216. 'desc_inputs': [[3, 2, 1, 1]],
  1217. 'desc_bprop': [[3, 2]]}),
  1218. ('Size', {
  1219. 'block': P.Size(),
  1220. 'desc_inputs': [[2, 3, 5]],
  1221. 'skip': ['backward']}),
  1222. ('Tile_0', {
  1223. 'block': P.Tile(),
  1224. 'desc_const': [(1, 2)],
  1225. 'desc_inputs': [[64, 1]],
  1226. 'desc_bprop': [[64, 2]]}),
  1227. ('Tile_1', {
  1228. 'block': P.Tile(),
  1229. 'desc_const': [(1, 1)],
  1230. 'desc_inputs': [[64, 1]],
  1231. 'desc_bprop': [[64, 1]]}),
  1232. ('Tile_2', {
  1233. 'block': P.Tile(),
  1234. 'desc_const': [(2, 1, 1, 2)],
  1235. 'desc_inputs': [[2, 2, 2]],
  1236. 'desc_bprop': [[2, 2, 2, 4]]}),
  1237. ('ConcatV2_0', {
  1238. 'block': P.Concat(),
  1239. 'desc_inputs': [
  1240. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  1241. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  1242. 'desc_bprop': [([4, 2], {'dtype': np.int32})]}),
  1243. ('ConcatV2_1', {
  1244. 'block': P.Concat(axis=2),
  1245. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  1246. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  1247. 'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}),
  1248. ('ConcatV2_2', {
  1249. 'block': NetForConcat(),
  1250. 'desc_inputs': [[2, 2]],
  1251. 'desc_bprop': [[4, 2]]}),
  1252. ('ConcatV2_3', {
  1253. 'block': NetForConcat1(),
  1254. 'desc_inputs': [[2, 2], [2, 2]],
  1255. 'desc_bprop': [[4, 2]]}),
  1256. ('ConcatV2_4', {
  1257. 'block': P.Concat(axis=0),
  1258. 'desc_inputs': [
  1259. (Tensor(np.ones((3, 2, 3), np.float32)),
  1260. Tensor(np.ones((5, 2, 3), np.float32)),
  1261. Tensor(np.ones((6, 2, 3), np.float32)))],
  1262. 'desc_bprop': [[14, 2, 3]]}),
  1263. ('ConcatV2_5', {
  1264. 'block': P.Concat(axis=-1),
  1265. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  1266. Tensor(np.array([1], np.float32)),
  1267. Tensor(np.array([1], np.float32)))],
  1268. 'desc_bprop': [[3,]]}),
  1269. ('Pack_0', {
  1270. 'block': NetForPackInput(P.Pack()),
  1271. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  1272. 'desc_bprop': [[3, 2, 2]],
  1273. }),
  1274. ('Pack_1', {
  1275. 'block': NetForPackInput(P.Pack(axis=-2)),
  1276. 'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]],
  1277. 'desc_bprop': [[3, 2, 3, 3]],
  1278. }),
  1279. ('Pack_2', {
  1280. 'block': NetForPackInput(P.Pack()),
  1281. 'desc_inputs': [[128, 128], [128, 128]],
  1282. 'desc_bprop': [[2, 128, 128]],
  1283. }),
  1284. ('Unpack_0', {
  1285. 'block': NetForUnpackInput(P.Unpack(axis=0)),
  1286. 'desc_inputs': [[2, 4]],
  1287. 'desc_bprop': [[4], [4]],
  1288. }),
  1289. ('Unpack_1', {
  1290. 'block': NetForUnpackInput(P.Unpack(axis=-1)),
  1291. 'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))],
  1292. 'desc_bprop': [[1], [1], [1]],
  1293. }),
  1294. ('Diag_1', {
  1295. 'block': P.Diag(),
  1296. 'desc_inputs': [[4]],
  1297. 'desc_bprop': [[4, 4]],
  1298. }),
  1299. ('Diag_2', {
  1300. 'block': P.Diag(),
  1301. 'desc_inputs': [[4, 4]],
  1302. 'desc_bprop': [[4, 4, 4, 4]],
  1303. }),
  1304. ('DiagPart_1', {
  1305. 'block': P.DiagPart(),
  1306. 'desc_inputs': [[4, 4]],
  1307. 'desc_bprop': [[4]],
  1308. }),
  1309. ('DiagPart_2', {
  1310. 'block': P.DiagPart(),
  1311. 'desc_inputs': [[4, 4, 4, 4]],
  1312. 'desc_bprop': [[4, 4]],
  1313. }),
  1314. ('SpaceToBatch_1', {
  1315. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  1316. 'desc_inputs': [[1, 3, 2, 2]],
  1317. 'desc_bprop': [[4, 3, 1, 1]],
  1318. }),
  1319. ('SpaceToBatch_2', {
  1320. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  1321. 'desc_inputs': [[1, 3, 2, 2]],
  1322. 'desc_bprop': [[4, 3, 2, 3]],
  1323. }),
  1324. ('BatchToSpace_1', {
  1325. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  1326. 'desc_inputs': [[4, 3, 1, 1]],
  1327. 'desc_bprop': [[1, 3, 2, 2]],
  1328. }),
  1329. ('BatchToSpace_2', {
  1330. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  1331. 'desc_inputs': [[4, 3, 1, 1]],
  1332. 'desc_bprop': [[1, 3, 2, 1]],
  1333. }),
  1334. ('UnsortedSegmentMin_1', {
  1335. 'block': P.UnsortedSegmentMin(),
  1336. 'desc_const': [2],
  1337. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)),
  1338. Tensor(np.array([0, 1, 1]).astype(np.int32))],
  1339. 'desc_bprop': [Tensor(np.array([[1, 2, 3], [4, 2, 1]]).astype(np.float32))]}),
  1340. ('BroadcastTo', {
  1341. 'block': P.BroadcastTo((2,3)),
  1342. 'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))],
  1343. 'desc_bprop': [Tensor(np.array([[1, 2, 3], [1, 2, 3]]).astype(np.float32))]}),
  1344. ]
  1345. test_case_other_ops = [
  1346. ('ScalarLog', {
  1347. 'block': F.scalar_log,
  1348. 'desc_const': [0.0],
  1349. 'desc_inputs': [],
  1350. 'desc_bprop': [1],
  1351. 'skip': ['backward']}),
  1352. ('BoundingBoxEncode', {
  1353. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  1354. 'desc_inputs': [[256, 4], [256, 4]],
  1355. 'desc_bprop': [[256, 4]],
  1356. 'skip': ['backward']}),
  1357. ('BoundingBoxDecode', {
  1358. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  1359. 'desc_inputs': [[256, 4], [256, 4]],
  1360. 'desc_bprop': [[256, 4]],
  1361. 'skip': ['backward']}),
  1362. ('GatherNd', {
  1363. 'block': P.GatherNd(),
  1364. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  1365. Tensor(np.ones((2, 4), np.int32))),
  1366. 'desc_bprop': [[2]]}),
  1367. ('ScatterNd', {
  1368. 'block': P.ScatterNd(),
  1369. 'desc_const': [(3, 3)],
  1370. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  1371. Tensor(np.ones((2,), np.int32))),
  1372. 'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
  1373. ('ScatterMax', {
  1374. 'block': ScatterMax(),
  1375. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1376. Tensor(np.ones([2, 2, 3], np.float32) * 99)),
  1377. 'skip': ['backward']}),
  1378. ('ScatterAdd', {
  1379. 'block': ScatterAdd((6,)),
  1380. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  1381. Tensor(np.array([2.0, 3.0, 4.0], np.float32))),
  1382. 'skip': ['backward']}),
  1383. ('ScatterAdd2d', {
  1384. 'block': ScatterAdd((3, 4)),
  1385. 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  1386. Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
  1387. [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
  1388. 'skip': ['backward']}),
  1389. ('SmoothL1Loss', {
  1390. 'block': P.SmoothL1Loss(),
  1391. 'desc_inputs': [[256, 4], [256, 4]],
  1392. 'desc_bprop': [[256, 4]]}),
  1393. ('IOU', {
  1394. 'block': P.IOU(),
  1395. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  1396. 'desc_bprop': [[128, 256]]}),
  1397. ('Summary', {
  1398. 'block': SummaryNet(),
  1399. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1400. Tensor(np.array([1.2]).astype(np.float32))],
  1401. 'skip': ['backward']}),
  1402. ('ConfusionMulGrad_1', {
  1403. 'block': P.ConfusionMulGrad(axis=[0], keep_dims=False),
  1404. 'desc_inputs': [[3, 2], [3, 2], [3, 2]],
  1405. 'desc_bprop': [[3, 2], [2]],
  1406. 'skip': ['backward']}),
  1407. ('ConfusionMulGrad_2', {
  1408. 'block': P.ConfusionMulGrad(axis=[0], keep_dims=True),
  1409. 'desc_inputs': [[3, 2], [3, 2], [3, 2]],
  1410. 'desc_bprop': [[3, 2], [1, 2]],
  1411. 'skip': ['backward']}),
  1412. ('ConfusionMulGrad_3', {
  1413. 'block': P.ConfusionMulGrad(axis=(), keep_dims=True),
  1414. 'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
  1415. 'desc_bprop': [[2, 3, 4], [1, 1, 1]],
  1416. 'skip': ['backward']}),
  1417. ('HistogramSummary', {
  1418. 'block': HistogramSummaryNet(),
  1419. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1420. Tensor(np.array([1.2]).astype(np.float32))],
  1421. 'skip': ['backward']}),
  1422. ]
  1423. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
  1424. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  1425. # use -k to select certain testcast
  1426. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  1427. test_exec_case = test_case
  1428. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or 'backward' not in x[1]['skip'], test_case)
  1429. @non_graph_engine
  1430. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  1431. def test_exec():
  1432. context.set_context(mode=context.GRAPH_MODE)
  1433. return test_exec_case
  1434. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  1435. def test_backward_exec():
  1436. context.set_context(mode=context.GRAPH_MODE)
  1437. return test_backward_exec_case
  1438. raise_set = [
  1439. ('Cast_Error', {
  1440. 'block': (P.Cast(), {'exception': TypeError}),
  1441. 'desc_const': [mstype.int32],
  1442. 'desc_inputs': ['wrong input'],
  1443. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  1444. ('Maximum_Error', {
  1445. 'block': (P.Maximum(), {'exception': TypeError}),
  1446. 'desc_const': [(1, 2, 3)],
  1447. 'desc_inputs': [[2, 3, 3, 5]],
  1448. 'desc_bprop': [[2, 3, 3, 5]]}),
  1449. ('Shape_error', {
  1450. 'block': (P.Shape(), {'exception': TypeError}),
  1451. 'desc_inputs': [(64, 1)],
  1452. 'desc_bprop': [[64]]}),
  1453. ('Flatten_Error', {
  1454. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  1455. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  1456. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  1457. ('ScatterNdUpdate', {
  1458. 'block': (P.ScatterNdUpdate(), {'exception': TypeError}),
  1459. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  1460. Tensor(np.ones((2, 2), np.float32)),
  1461. Tensor(np.ones((2,), np.float32))),
  1462. 'desc_bprop': [[2, 3]]}),
  1463. ('Pack', {
  1464. 'block': (NetForPackInput(P.Pack()), {'exception': ValueError}),
  1465. 'desc_inputs': [[2, 2]],
  1466. 'desc_bprop': [[1, 2, 2]]}),
  1467. ('PReLU', {
  1468. 'block': (P.PReLU(), {'exception': ValueError}),
  1469. 'desc_inputs': [[2], [1]],
  1470. 'desc_bprop': [[1]]}),
  1471. ]
  1472. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  1473. def test_check_exception():
  1474. return raise_set