You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_scalar_loss.py 2.2 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from mindspore import context
  16. import mindspore.nn as nn
  17. from mindspore.ops import operations as P
  18. from mindspore import Tensor
  19. from tests.ut.python.ops.test_math_ops import VirtualLoss
  20. import mindspore as ms
  21. from mindspore.common.api import _executor
  22. from mindspore.ops import composite as C
  23. from mindspore.ops import functional as F
  24. class GradWrap(nn.Cell):
  25. def __init__(self, network):
  26. super(GradWrap, self).__init__()
  27. self.network = network
  28. def construct(self, x, y, bias):
  29. return C.grad_all(self.network)(x, y, bias)
  30. def test_sum_as_loss():
  31. class Net(nn.Cell):
  32. def __init__(self, strategy0, strategy1):
  33. super().__init__()
  34. self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0)
  35. self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1)
  36. self.mul = P.Mul().set_strategy(strategy=((), ()))
  37. def construct(self, x, y, bias):
  38. out = self.fc_nobias(x, y)
  39. out = self.reduce_sum(out, (0,1))
  40. out = self.mul(out, F.scalar_to_array(2.0))
  41. return out
  42. context.set_auto_parallel_context(device_num=16, global_rank=0)
  43. strategy0 = ((4, 1), (4, 1))
  44. strategy1 = ((4, 1), )
  45. net = GradWrap(Net(strategy0, strategy1))
  46. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  47. x = Tensor(np.ones([64, 32]), dtype=ms.float32)
  48. y = Tensor(np.ones([64, 32]), dtype=ms.float32)
  49. bias = Tensor(np.ones([64]), dtype=ms.float32)
  50. _executor.compile(net, x, y, bias)