You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_lars.py 3.0 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore.nn as nn
  17. from mindspore import Tensor, Parameter
  18. from mindspore.common.api import _executor
  19. from mindspore.nn import TrainOneStepCell, WithLossCell
  20. from mindspore.nn.optim import LARS, Momentum
  21. from mindspore.ops import operations as P
  22. from mindspore.common import dtype as mstype
  23. from collections import Counter
  24. def multisteplr(total_steps, milestone, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
  25. lr = []
  26. milestone = Counter(milestone)
  27. for step in range(total_steps):
  28. base_lr = base_lr * gamma ** milestone[step]
  29. lr.append(base_lr)
  30. return Tensor(np.array(lr), dtype)
  31. class Net(nn.Cell):
  32. def __init__(self):
  33. super(Net, self).__init__()
  34. self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
  35. self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
  36. self.matmul = P.MatMul()
  37. self.biasAdd = P.BiasAdd()
  38. def construct(self, x):
  39. x = self.biasAdd(self.matmul(x, self.weight), self.bias)
  40. return x
  41. def test_lars_multi_step_lr():
  42. inputs = Tensor(np.ones([1, 64]).astype(np.float32))
  43. label = Tensor(np.zeros([1, 10]).astype(np.float32))
  44. net = Net()
  45. net.set_train()
  46. loss = nn.SoftmaxCrossEntropyWithLogits()
  47. lr = multisteplr(10, [2, 6])
  48. SGD = Momentum(net.trainable_params(), lr, 0.9)
  49. optimizer = LARS(SGD, epsilon=1e-08, hyperpara=0.02, decay_filter=lambda x: 'bn' not in x.name,
  50. lars_filter=lambda x: 'bn' not in x.name)
  51. net_with_loss = WithLossCell(net, loss)
  52. train_network = TrainOneStepCell(net_with_loss, optimizer)
  53. _executor.compile(train_network, inputs, label)
  54. def test_lars_float_lr():
  55. inputs = Tensor(np.ones([1, 64]).astype(np.float32))
  56. label = Tensor(np.zeros([1, 10]).astype(np.float32))
  57. net = Net()
  58. net.set_train()
  59. loss = nn.SoftmaxCrossEntropyWithLogits()
  60. lr = 0.1
  61. SGD = Momentum(net.trainable_params(), lr, 0.9)
  62. optimizer = LARS(SGD, epsilon=1e-08, hyperpara=0.02, decay_filter=lambda x: 'bn' not in x.name,
  63. lars_filter=lambda x: 'bn' not in x.name)
  64. net_with_loss = WithLossCell(net, loss)
  65. train_network = TrainOneStepCell(net_with_loss, optimizer)
  66. _executor.compile(train_network, inputs, label)