You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_sentencepiece_tokenizer.py 6.2 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. import mindspore.dataset.text as text
  16. import mindspore.dataset as ds
  17. from mindspore.dataset.text import SentencePieceModel, to_str, SPieceTokenizerOutType
  18. VOCAB_FILE = "../data/dataset/test_sentencepiece/botchan.txt"
  19. DATA_FILE = "../data/dataset/testTokenizerData/sentencepiece_tokenizer.txt"
  20. def test_from_vocab_to_str_UNIGRAM():
  21. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
  22. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
  23. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  24. dataset = dataset.map(operations=tokenizer)
  25. expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
  26. for i in dataset.create_dict_iterator():
  27. ret = to_str(i["text"])
  28. for key, value in enumerate(ret):
  29. assert value == expect[key]
  30. def test_from_vocab_to_str_BPE():
  31. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.BPE, {})
  32. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
  33. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  34. dataset = dataset.map(operations=tokenizer)
  35. expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'c', 'ope', '.']
  36. for i in dataset.create_dict_iterator():
  37. ret = to_str(i["text"])
  38. for key, value in enumerate(ret):
  39. assert value == expect[key]
  40. def test_from_vocab_to_str_CHAR():
  41. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.CHAR, {})
  42. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
  43. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  44. dataset = dataset.map(operations=tokenizer)
  45. expect = ['▁', 'I', '▁', 's', 'a', 'w', '▁', 'a', '▁', 'g', 'i', 'r', 'l', '▁', 'w', 'i', 't', 'h',\
  46. '▁', 'a', '▁', 't', 'e', 'l', 'e', 's', 'c', 'o', 'p', 'e', '.']
  47. for i in dataset.create_dict_iterator():
  48. ret = to_str(i["text"])
  49. for key, value in enumerate(ret):
  50. assert value == expect[key]
  51. def test_from_vocab_to_str_WORD():
  52. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.WORD, {})
  53. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
  54. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  55. dataset = dataset.map(operations=tokenizer)
  56. expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁telescope.']
  57. for i in dataset.create_dict_iterator():
  58. ret = to_str(i["text"])
  59. for key, value in enumerate(ret):
  60. assert value == expect[key]
  61. def test_from_vocab_to_int():
  62. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
  63. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.INT)
  64. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  65. dataset = dataset.map(operations=tokenizer)
  66. expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4]
  67. for i in dataset.create_dict_iterator():
  68. ret = i["text"]
  69. for key, value in enumerate(ret):
  70. assert value == expect[key]
  71. def test_from_file_to_str():
  72. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
  73. text.SentencePieceVocab.save_model(vocab, "./", "m.model")
  74. tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.STRING)
  75. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  76. dataset = dataset.map(operations=tokenizer)
  77. expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
  78. for i in dataset.create_dict_iterator():
  79. ret = to_str(i["text"])
  80. for key, value in enumerate(ret):
  81. assert value == expect[key]
  82. def test_from_file_to_int():
  83. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
  84. text.SentencePieceVocab.save_model(vocab, "./", "m.model")
  85. tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.INT)
  86. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  87. dataset = dataset.map(operations=tokenizer)
  88. expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4]
  89. for i in dataset.create_dict_iterator():
  90. ret = i["text"]
  91. for key, value in enumerate(ret):
  92. assert value == expect[key]
  93. def test_build_from_dataset():
  94. data = ds.TextFileDataset(VOCAB_FILE, shuffle=False)
  95. vocab = text.SentencePieceVocab.from_dataset(data, [""], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
  96. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
  97. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  98. dataset = dataset.map(operations=tokenizer)
  99. expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
  100. for i in dataset.create_dict_iterator():
  101. ret = to_str(i["text"])
  102. for key, value in enumerate(ret):
  103. assert value == expect[key]
  104. if __name__ == "__main__":
  105. test_from_vocab_to_str_UNIGRAM()
  106. test_from_vocab_to_str_BPE()
  107. test_from_vocab_to_str_CHAR()
  108. test_from_vocab_to_str_WORD()
  109. test_from_vocab_to_int()
  110. test_from_file_to_str()
  111. test_from_file_to_int()
  112. test_build_from_dataset()