You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.5 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import argparse
  16. import numpy as np
  17. import mindspore
  18. from mindspore import context, Tensor
  19. from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
  20. from src.ssd import SSD300, SsdInferWithDecoder, ssd_mobilenet_v2, ssd_mobilenet_v1_fpn
  21. from src.config import config
  22. from src.box_utils import default_boxes
  23. parser = argparse.ArgumentParser(description='SSD export')
  24. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  25. parser.add_argument("--batch_size", type=int, default=1, help="batch size")
  26. parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
  27. parser.add_argument("--file_name", type=str, default="ssd", help="output file name.")
  28. parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
  29. parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
  30. help="device target")
  31. args = parser.parse_args()
  32. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  33. if args.device_target == "Ascend":
  34. context.set_context(device_id=args.device_id)
  35. if __name__ == '__main__':
  36. if config.model == "ssd300":
  37. net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
  38. else:
  39. net = ssd_mobilenet_v1_fpn(config=config)
  40. net = SsdInferWithDecoder(net, Tensor(default_boxes), config)
  41. param_dict = load_checkpoint(args.ckpt_file)
  42. net.init_parameters_data()
  43. load_param_into_net(net, param_dict)
  44. net.set_train(False)
  45. input_shp = [args.batch_size, 3] + config.img_shape
  46. input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp), mindspore.float32)
  47. export(net, input_array, file_name=args.file_name, file_format=args.file_format)