You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_minddataset_sampler.py 12 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. This is the test module for mindrecord
  17. """
  18. import os
  19. import pytest
  20. import mindspore.dataset as ds
  21. from mindspore import log as logger
  22. from mindspore.dataset.text import to_str
  23. from mindspore.mindrecord import FileWriter
  24. FILES_NUM = 4
  25. CV_FILE_NAME = "../data/mindrecord/imagenet.mindrecord"
  26. CV_DIR_NAME = "../data/mindrecord/testImageNetData"
  27. @pytest.fixture
  28. def add_and_remove_cv_file():
  29. """add/remove cv file"""
  30. paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
  31. for x in range(FILES_NUM)]
  32. for x in paths:
  33. if os.path.exists("{}".format(x)):
  34. os.remove("{}".format(x))
  35. if os.path.exists("{}.db".format(x)):
  36. os.remove("{}.db".format(x))
  37. writer = FileWriter(CV_FILE_NAME, FILES_NUM)
  38. data = get_data(CV_DIR_NAME, True)
  39. cv_schema_json = {"id": {"type": "int32"},
  40. "file_name": {"type": "string"},
  41. "label": {"type": "int32"},
  42. "data": {"type": "bytes"}}
  43. writer.add_schema(cv_schema_json, "img_schema")
  44. writer.add_index(["file_name", "label"])
  45. writer.write_raw_data(data)
  46. writer.commit()
  47. yield "yield_cv_data"
  48. for x in paths:
  49. os.remove("{}".format(x))
  50. os.remove("{}.db".format(x))
  51. def test_cv_minddataset_pk_sample_no_column(add_and_remove_cv_file):
  52. """tutorial for cv minderdataset."""
  53. num_readers = 4
  54. sampler = ds.PKSampler(2)
  55. data_set = ds.MindDataset(CV_FILE_NAME + "0", None, num_readers,
  56. sampler=sampler)
  57. assert data_set.get_dataset_size() == 6
  58. num_iter = 0
  59. for item in data_set.create_dict_iterator():
  60. logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
  61. logger.info("-------------- item[file_name]: \
  62. {}------------------------".format(to_str(item["file_name"])))
  63. logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
  64. num_iter += 1
  65. def test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file):
  66. """tutorial for cv minderdataset."""
  67. columns_list = ["data", "file_name", "label"]
  68. num_readers = 4
  69. sampler = ds.PKSampler(2)
  70. data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
  71. sampler=sampler)
  72. assert data_set.get_dataset_size() == 6
  73. num_iter = 0
  74. for item in data_set.create_dict_iterator():
  75. logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
  76. logger.info("-------------- item[data]: \
  77. {}------------------------".format(item["data"][:10]))
  78. logger.info("-------------- item[file_name]: \
  79. {}------------------------".format(to_str(item["file_name"])))
  80. logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
  81. num_iter += 1
  82. def test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file):
  83. """tutorial for cv minderdataset."""
  84. columns_list = ["data", "file_name", "label"]
  85. num_readers = 4
  86. sampler = ds.PKSampler(3, None, True)
  87. data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
  88. sampler=sampler)
  89. assert data_set.get_dataset_size() == 9
  90. num_iter = 0
  91. for item in data_set.create_dict_iterator():
  92. logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
  93. logger.info("-------------- item[file_name]: \
  94. {}------------------------".format(to_str(item["file_name"])))
  95. logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
  96. num_iter += 1
  97. def test_cv_minddataset_pk_sample_out_of_range(add_and_remove_cv_file):
  98. """tutorial for cv minderdataset."""
  99. columns_list = ["data", "file_name", "label"]
  100. num_readers = 4
  101. sampler = ds.PKSampler(5, None, True)
  102. data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
  103. sampler=sampler)
  104. assert data_set.get_dataset_size() == 15
  105. num_iter = 0
  106. for item in data_set.create_dict_iterator():
  107. logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
  108. logger.info("-------------- item[file_name]: \
  109. {}------------------------".format(to_str(item["file_name"])))
  110. logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
  111. num_iter += 1
  112. def test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file):
  113. """tutorial for cv minderdataset."""
  114. columns_list = ["data", "file_name", "label"]
  115. num_readers = 4
  116. indices = [1, 2, 3, 5, 7]
  117. sampler = ds.SubsetRandomSampler(indices)
  118. data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
  119. sampler=sampler)
  120. assert data_set.get_dataset_size() == 5
  121. num_iter = 0
  122. for item in data_set.create_dict_iterator():
  123. logger.info(
  124. "-------------- cv reader basic: {} ------------------------".format(num_iter))
  125. logger.info(
  126. "-------------- item[data]: {} -----------------------------".format(item["data"]))
  127. logger.info(
  128. "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
  129. logger.info(
  130. "-------------- item[label]: {} ----------------------------".format(item["label"]))
  131. num_iter += 1
  132. assert num_iter == 5
  133. def test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file):
  134. """tutorial for cv minderdataset."""
  135. columns_list = ["data", "file_name", "label"]
  136. num_readers = 4
  137. indices = [1, 2, 2, 5, 7, 9]
  138. sampler = ds.SubsetRandomSampler(indices)
  139. data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
  140. sampler=sampler)
  141. assert data_set.get_dataset_size() == 6
  142. num_iter = 0
  143. for item in data_set.create_dict_iterator():
  144. logger.info(
  145. "-------------- cv reader basic: {} ------------------------".format(num_iter))
  146. logger.info(
  147. "-------------- item[data]: {} -----------------------------".format(item["data"]))
  148. logger.info(
  149. "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
  150. logger.info(
  151. "-------------- item[label]: {} ----------------------------".format(item["label"]))
  152. num_iter += 1
  153. assert num_iter == 6
  154. def test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file):
  155. """tutorial for cv minderdataset."""
  156. columns_list = ["data", "file_name", "label"]
  157. num_readers = 4
  158. indices = []
  159. sampler = ds.SubsetRandomSampler(indices)
  160. data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
  161. sampler=sampler)
  162. assert data_set.get_dataset_size() == 0
  163. num_iter = 0
  164. for item in data_set.create_dict_iterator():
  165. logger.info(
  166. "-------------- cv reader basic: {} ------------------------".format(num_iter))
  167. logger.info(
  168. "-------------- item[data]: {} -----------------------------".format(item["data"]))
  169. logger.info(
  170. "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
  171. logger.info(
  172. "-------------- item[label]: {} ----------------------------".format(item["label"]))
  173. num_iter += 1
  174. assert num_iter == 0
  175. def test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file):
  176. """tutorial for cv minderdataset."""
  177. columns_list = ["data", "file_name", "label"]
  178. num_readers = 4
  179. indices = [1, 2, 4, 11, 13]
  180. sampler = ds.SubsetRandomSampler(indices)
  181. data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
  182. sampler=sampler)
  183. assert data_set.get_dataset_size() == 5
  184. num_iter = 0
  185. for item in data_set.create_dict_iterator():
  186. logger.info(
  187. "-------------- cv reader basic: {} ------------------------".format(num_iter))
  188. logger.info(
  189. "-------------- item[data]: {} -----------------------------".format(item["data"]))
  190. logger.info(
  191. "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
  192. logger.info(
  193. "-------------- item[label]: {} ----------------------------".format(item["label"]))
  194. num_iter += 1
  195. assert num_iter == 5
  196. def test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file):
  197. """tutorial for cv minderdataset."""
  198. columns_list = ["data", "file_name", "label"]
  199. num_readers = 4
  200. indices = [1, 2, 4, -1, -2]
  201. sampler = ds.SubsetRandomSampler(indices)
  202. data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
  203. sampler=sampler)
  204. assert data_set.get_dataset_size() == 5
  205. num_iter = 0
  206. for item in data_set.create_dict_iterator():
  207. logger.info(
  208. "-------------- cv reader basic: {} ------------------------".format(num_iter))
  209. logger.info(
  210. "-------------- item[data]: {} -----------------------------".format(item["data"]))
  211. logger.info(
  212. "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
  213. logger.info(
  214. "-------------- item[label]: {} ----------------------------".format(item["label"]))
  215. num_iter += 1
  216. assert num_iter == 5
  217. def get_data(dir_name, sampler=False):
  218. """
  219. usage: get data from imagenet dataset
  220. params:
  221. dir_name: directory containing folder images and annotation information
  222. """
  223. if not os.path.isdir(dir_name):
  224. raise IOError("Directory {} not exists".format(dir_name))
  225. img_dir = os.path.join(dir_name, "images")
  226. if sampler:
  227. ann_file = os.path.join(dir_name, "annotation_sampler.txt")
  228. else:
  229. ann_file = os.path.join(dir_name, "annotation.txt")
  230. with open(ann_file, "r") as file_reader:
  231. lines = file_reader.readlines()
  232. data_list = []
  233. for i, line in enumerate(lines):
  234. try:
  235. filename, label = line.split(",")
  236. label = label.strip("\n")
  237. with open(os.path.join(img_dir, filename), "rb") as file_reader:
  238. img = file_reader.read()
  239. data_json = {"id": i,
  240. "file_name": filename,
  241. "data": img,
  242. "label": int(label)}
  243. data_list.append(data_json)
  244. except FileNotFoundError:
  245. continue
  246. return data_list