You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ##############export checkpoint file into air , mindir and onnx models#################
  17. python export.py --net squeezenet --dataset cifar10 --checkpoint_path squeezenet_cifar10-120_1562.ckpt
  18. """
  19. import argparse
  20. import numpy as np
  21. from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export
  22. parser = argparse.ArgumentParser(description='checkpoint export')
  23. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  24. parser.add_argument("--batch_size", type=int, default=32, help="batch size")
  25. parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
  26. parser.add_argument('--width', type=int, default=227, help='input width')
  27. parser.add_argument('--height', type=int, default=227, help='input height')
  28. parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'],
  29. help='Model.')
  30. parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.')
  31. parser.add_argument("--file_name", type=str, default="squeezenet", help="output file name.")
  32. parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
  33. parser.add_argument("--device_target", type=str, default="Ascend",
  34. choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
  35. args = parser.parse_args()
  36. if args.net == "squeezenet":
  37. from src.squeezenet import SqueezeNet as squeezenet
  38. else:
  39. from src.squeezenet import SqueezeNet_Residual as squeezenet
  40. if args.dataset == "cifar10":
  41. num_classes = 10
  42. else:
  43. num_classes = 1000
  44. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
  45. if __name__ == '__main__':
  46. net = squeezenet(num_classes=num_classes)
  47. param_dict = load_checkpoint(args.ckpt_file)
  48. load_param_into_net(net, param_dict)
  49. input_data = Tensor(np.zeros([args.batch_size, 3, args.height, args.width], np.float32))
  50. export(net, input_data, file_name=args.file_name, file_format=args.file_format)