You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ##############export checkpoint file into geir and onnx models#################
  17. """
  18. import argparse
  19. import numpy as np
  20. import mindspore as ms
  21. from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
  22. from src.config import nasnet_a_mobile_config_gpu as cfg
  23. from src.nasnet_a_mobile import NASNetAMobile
  24. parser = argparse.ArgumentParser(description='nasnet export')
  25. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  26. parser.add_argument("--batch_size", type=int, default=1, help="batch size")
  27. parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
  28. parser.add_argument("--file_name", type=str, default="nasnet", help="output file name.")
  29. parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
  30. parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
  31. help="device target")
  32. args = parser.parse_args()
  33. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
  34. if __name__ == '__main__':
  35. net = NASNetAMobile(num_classes=cfg.num_classes, is_training=False)
  36. param_dict = load_checkpoint(args.ckpt_file)
  37. load_param_into_net(net, param_dict)
  38. input_arr = Tensor(np.ones([args.batch_size, 3, cfg.image_size, cfg.image_size]), ms.float32)
  39. export(net, input_arr, file_name=args.file_name, file_format=args.file_format)