|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- # YOLOV3-DarkNet53 Example
-
- ## Description
-
- This is an example of training YOLOV3-DarkNet53 with COCO2014 dataset in MindSpore.
-
- ## Requirements
-
- - Install [MindSpore](https://www.mindspore.cn/install/en).
-
- - Download the dataset COCO2014.
-
- > Unzip the COCO2014 dataset to any path you want, the folder should include train and eval dataset as follows:
-
- ```
- .
- └─dataset
- ├─train2014
- ├─val2014
- └─annotations
- ```
-
- ## Structure
-
- ```shell
- .
- └─yolov3_darknet53
- ├─README.md
- ├─scripts
- ├─run_standalone_train.sh # launch standalone training(1p)
- ├─run_distribute_train.sh # launch distributed training(8p)
- └─run_eval.sh # launch evaluating
- ├─src
- ├─config.py # parameter configuration
- ├─darknet.py # backbone of network
- ├─distributed_sampler.py # iterator of dataset
- ├─initializer.py # initializer of parameters
- ├─logger.py # log function
- ├─loss.py # loss function
- ├─lr_scheduler.py # generate learning rate
- ├─transforms.py # Preprocess data
- ├─util.py # util function
- ├─yolo.py # yolov3 network
- ├─yolo_dataset.py # create dataset for YOLOV3
- ├─eval.py # eval net
- └─train.py # train net
- ```
-
- ## Running the example
-
- ### Train
-
- #### Usage
-
- ```
- # distributed training
- sh run_distribute_train.sh [DATASET_PATH] [PRETRAINED_BACKBONE] [MINDSPORE_HCCL_CONFIG_PATH]
-
- # standalone training
- sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_BACKBONE]
- ```
-
- #### Launch
-
- ```bash
- # distributed training example(8p)
- sh run_distribute_train.sh dataset/coco2014 backbone/backbone.ckpt rank_table_8p.json
-
- # standalone training example(1p)
- sh run_standalone_train.sh dataset/coco2014 backbone/backbone.ckpt
- ```
-
- > About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
-
- #### Result
-
- Training result will be stored in the scripts path, whose folder name begins with "train" or "train_parallel". You can find checkpoint file together with result like the followings in log.txt.
-
- ```
- # distribute training result(8p)
- epoch[0], iter[0], loss:14623.384766, 1.23 imgs/sec, lr:7.812499825377017e-05
- epoch[0], iter[100], loss:1486.253051, 15.01 imgs/sec, lr:0.007890624925494194
- epoch[0], iter[200], loss:288.579535, 490.41 imgs/sec, lr:0.015703124925494194
- epoch[0], iter[300], loss:153.136754, 531.99 imgs/sec, lr:0.023515624925494194
- epoch[1], iter[400], loss:106.429322, 405.14 imgs/sec, lr:0.03132812678813934
- ...
- epoch[318], iter[102000], loss:34.135306, 431.06 imgs/sec, lr:9.63797629083274e-06
- epoch[319], iter[102100], loss:35.652469, 449.52 imgs/sec, lr:2.409552052995423e-06
- epoch[319], iter[102200], loss:34.652273, 384.02 imgs/sec, lr:2.409552052995423e-06
- epoch[319], iter[102300], loss:35.430038, 423.49 imgs/sec, lr:2.409552052995423e-06
- ...
- ```
-
- ### Infer
-
- #### Usage
-
- ```
- # infer
- sh run_eval.sh [DATASET_PATH] [CHECKPOINT_PATH]
- ```
-
- #### Launch
-
- ```bash
- # infer with checkpoint
- sh run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
-
- ```
-
- > checkpoint can be produced in training process.
-
-
- #### Result
-
- Inference result will be stored in the scripts path, whose folder name is "eval". Under this, you can find result like the followings in log.txt.
-
- ```
- =============coco eval reulst=========
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.311
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.528
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.322
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.127
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.323
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.428
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.259
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.398
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.423
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.224
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.442
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.551
- ```
|